首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The stereochemistry and complexation behaviour of diphenyl diketone monothiosemicarbazone (DKTS) with CuII, CoII, NiII, CdII, ZnII, PdII, PtII, RuIII, RhIII and IrIII have been investigated by means of chemical, magnetic and spectral (i.r., Raman, 1H- and 13C-n.m.r. and electronic) studies. The ligand forms complexes of the M(DKTS)2 type with NiII, CuII and CoII having a distorted octahedral geometry. The absence of a v(M—X) band in the i.r. spectra, coupled with their 1:1 electrolytic conductances, suggests that RuIII, RhIII and IrIII form octahedral complexes of the [M(DKTS)2]Cl type. A four-coordinate structure involving bridging halides is proposed for the ZnII, CdII, PdII and PtII complexes, which have relatively low v(M—X) vibration modes.  相似文献   

2.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

3.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

4.
Summary 1-Chloro- and 1-bromobenzotriazole were tested as new electrophilic halogenating agents for γ-substitution of acetylacetonates. The inert and less labile acetylacetonates, such as those containing CrIII, CoIII, AlIII, FeIII and VOIV, underwent γ-halogenation leaving all the chelate rings intact, whereas the labile chelates of CuII, NiII, CoII and ZnII, apart from undergoing γ-halogenation, experienced partial ligand substitution by the benzotriazole moiety to yield a solid dimer, [M(BTA)(Xacac)]2 (X = Cl or Br). Such selective formation of a mixed-ligand complex or γ-halo β-diketonate can be ascribed to the lability of the substrate chelate and to the strong coordinating ability of benzotriazole.  相似文献   

5.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

6.
A theoretical density functional study of the magnetic coupling interactions and magnetic anisotropy in a family of experimentally synthesized and theoretically modeled M′6M8(CN24) (M′=CuII, NiII or CoII; M=FeIII or CrIII) systems is presented. The calculations show that the interactions in the selected M′6M8(CN24) are all ferromagnetic and the near cubic symmetry of Cu6Fe8 is the origin of its negative magnetic anisotropy parameter D.  相似文献   

7.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

8.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

9.
Several new complexes of a tridentate ONS Schiff base derived from the condensation of S-benzyldithiocarbazate with salicylaldehyde have been characterised by elemental analyses, molar conductivity measurements and by i.r. and electronic spectra. The Schiff base (HONSH) behaves as a dinegatively charged ligand coordinating through the thiolo sulphur, the azomethine nitrogen and the hydroxyl oxygen. It forms mono-ligand complexes: [M(ONS)X], [M=NiII, CuII, CrIII, SbIII, ZnII, ZrIV or UVI with X = H2O, Cl]. The ligand produced a bis-chelated complex of composition [Th(ONS)2] with ThIV. Square-planar structures are proposed for the NiII and CuII complexes. Antimicrobial tests indicate that the Schiff base and five of the metal complexes of CuII, NiII, UVI, ZnII and SbIII are strongly active against bacteria. NiII and SbIII complexes were the most effective against Pseudomonas aeruginosa (gram negative), while the CuII complex proved to be best against Bacillus cereus (gram positive bacteria). Antifungal activities were also noted with the Schiff base and the UVI complex. These compounds showed positive results against Candida albicans fungi, however, none of them were effective against Aspergillus ochraceous fungi. The Schiff base and its zinc and antimony complexes are strongly active against leukemic cells (CD50 = 2.3–4.3 μg cm−3) while the copper, uranium and thorium complexes are moderately active (CD50 = 6.9–9.5 μg cm−3). The nickel, zirconium and chromium complexes were found to be inactive. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

11.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

12.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

13.
Summary The synthesis and characterization of CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and UO inf2 sup2+ complexes of N-isonicotinamido-N-benzoylthiocarbamide (H2IBTC) are reported. I.r. spectral data show that the ligand behaves in a bidentate, tridentate and/or tetradentate manner. Different stereochemistries are proposed for CrIII, MnII, FeIII, CoII, NiII and CuII complexes on the basis of spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the benzoyl moiety is the backbone of chelation in most complexes.  相似文献   

14.
The exchange coupling constants (J) were calculated and the spin density distributions were analyzed in the B3LYP/TZV approximation for the complex anions [L2M(1)IIILM(2)IIL2] n, where L is ligand (L is oxalate, oxamide, dithiooxamide, hydroxamate) and M(1) and M(2) are atoms of the tri- and divalent 3d-transition metals, respectively, and n- is the charge of the anion. The largest J values were found for the complexes formed by the CrIII-NiII and CrIII-CoII pairs with the dithiooxamide ligands. Differences between the calculated and experimental J values are at most a few cm−1.  相似文献   

15.
Summary The vibrational spectra of the oxamide and deuteriooxamide complexes with NiII, PdII, CuII, ZnII and CoIII are presented. The vibrational analysis is given for a planarD 2h structure for the NiII, CuII and PdII compounds; the ZnII and CoIII complexes have a tetrahedral and octahedral structure respectively.Presented in part at the XIX I.C.C.C. Prague 1978.  相似文献   

16.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

17.
Binuclear Schiff base complexes derived from glycine (Gly) and 3-acetylpyridine (3-APy) in the presence of M(OAc)2 [M = CoII, NiII, CuII, ZnII and CdII] have been synthesized. The role of pH in promoting the condensation of glycine and 3-acetylpyridine, as well as the substitution of acetates by hydroxide ion, has been discussed. Also, the reaction of glycine with 3-acetylpyridine in the presence of MCl2 [M = CoII and NiII] and MCl3 [M = FeIII and CrIII] yields mono- and/or binuclear complexes containing both of glycine and 3-acetylpyridine without condensation. Both types of complex were isolated and characterized by chemical analysis, conductance, spectral (u.v.–vis., i.r., and 1H-n.m.r.), magnetic and thermal measurements.  相似文献   

18.
We report herein a detailed study of the use of porphyrins fused to imidazolium salts as precursors of N‐heterocyclic carbene ligands 1 M . Rhodium(I) complexes 6 M – 9 M were prepared by using 1 M ligands with different metal cations in the inner core of the porphyrin (M=NiII, ZnII, MnIII, AlIII, 2H). The electronic properties of the corresponding N‐heterocyclic carbene ligands were investigated by monitoring the spectroscopic changes occurring in the cod and CO ancillary ligands of [( 1 M )Rh(cod)Cl] and [( 1 M )Rh(CO)2Cl] complexes (cod=1,5‐cyclooctadiene). Porphyrin–NHC ligands 1 M with a trivalent metal cation such as MnIII and AlIII are overall poorer electron donors than porphyrin–NHC ligands with no metal cation or incorporating a divalent metal cation such as NiII and ZnII. Imidazolium salts 3 M (M=Ni, Zn, Mn, 2H) have also been used as NHC precursors to catalyze the ring‐opening polymerization of L ‐lactide. The results clearly show that the inner metal of the porphyrin has an important effect on the reactivity of the outer carbene.  相似文献   

19.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

20.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号