首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pathways of migration of the multiple bond in propene and propyne molecules involving the hydroxide ion were investigated by theab initio (RHF/6-31+G* and MP2/6-31+G*) methods. Stationary points corresponding to stable complexes between the molecules under study and the hydroxide ion and between corresponding carbanions and water molecule were found on the potential energy surfaces of the proton transfer reactions. In the presence of hydroxide ion, migration of the multiple bond can occur by an “intramolecular” mechanism of the proton transfer involving the proton of hydroxide ion bound in the complex with propene or propyne molecule. For the propene system, such a mechanism seems to be quite realistic and more preferable energetically than a traditional two-stage mechanism with a passage of the proton into the medium. For the system with the triple bond, an equal expenditure of energy is required to follow any mechanism (without taking into account the effects of solvation and the interaction with a cation), whereas the formation of the stable [H2C=C=CH·H2O] complex can prevent further transformations. For Part 1, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–41, January, 1999.  相似文献   

2.
The CH3OCOCl molecule is calculated by ab initio methods using the split-valence basis sets at RHF/3-21G//RHF/3-21G, RHF/6-31G*//RHF/6-31G*, and RHF/6-311G*//RHF/6-31G* levels of theory and in the MNDO approximation. The optimized geometry of the molecule is consistent with the experimental data. The populations of the p-AOs of this molecule and the MO compositions show that the electron distribution in this molecule should be interpreted without considering the conjugation between the lone electron pairs of the Cl or O atoms and the π-electron system of the carbonyl group. The asymmetry parameters of the electric field gradient on the35Cl nucleus were calculated using the Cl p-AO populations and compared with the corresponding experimental value. Instite of Technical Chemistry, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Struktumoi Khimii, Vol. 37, No. 4, pp. 646–651, July–August, 1996. Translated by I. Izvekova  相似文献   

3.
The equilibrium geometric parameters and structures of transition states of internal rotation for the molecules of methyldicyanophospine MeP(CN)2 and its isocyano analog MeP(NC)2 were calculated by the RHF and MP2 methods with the 6–31G* and 6–31G** basis sets. At the MP2 level, the total energy of cyanide is −35 kcal mol−1 lower than that of isocyanide and the barriers to internal rotation of methyl group for MeP(CN)2 and MeP(NC)2 are 2.2 and 2.7 kcal mol−1, respectively. For both molecules, the one-dimensionalab initio potential functions of internal rotation approximated by a truncated Fourier series were used to determine the frequencies of torsional transitions by solving direct vibrational problems for a non-rigid model. The Raman spectrum of crystalline MeP(CN)2 was recorded in the range 3500–50 cm−1. The vibrational spectra of this compound were interpreted by scalingab initio force fields calculated by the RHF and MP2 method. The vibrational spectrum of methyldiisocyanophosphine was predicted with the use of the obtained scale factors. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1703–1714, September, 1998.  相似文献   

4.
The gradient pathways of the reaction of nucleophilic addition of ammonia to formaldehyde were calculated for free molecules and in the NH3...H2CO...HC(O)OH complex by theab initio RHF/6-31G**, MP2(fc)/6-31G**, and MP2(full)/6-311++G** methods. Both reactions proceed concertedly. In the first case, the reaction successively passes through two transitional states with an energy barrier exceeding 35 kcal mol−1. In the case of the complex with formic acid, the reaction follows a conventional pathway, although its activation barrier calculated by the RHF/6-31G** and MP2(fc)/6-31G** methods decreases to 12.6 and 3.8 kcal mol−1, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 13–20, January, 1998.  相似文献   

5.
The geometry and force fields of the bis(trimethylstannyl)acetylene molecule (a conformer withD 3d symmetry corresponding to a minimum of the total energy of the molecule) were calculated by the RHF and MP2(fc) methods. The effective core potential in SBK form with the optimized 31G* valence basis set was employed in the case of Sn atoms. The 6–31G** and 6–311G** basis sets were used for carbon and hydrogen atoms. Vibrational spectra of the light and perdeuterated isotopomers of bis(trimethylstannyl)acetylene were interpreted using the procedure of scaling the quantum-chemical force fields. For Part 5, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 616–626, April, 2000.  相似文献   

6.
The molecular structures of theendo (1a) andexo (1b) isomers of B4H8CO have been optimized at the ab initio MP2(Full)/6-31G* level of theory. The agreement of the computed geometrical parameters with the recently published electron-diffraction (GED) data is very good, even though a number of geometrical constraints were applied in the experimental determination. The IGLO (individual gauge for localized orbitals)11B NMR chemical shifts, calculated at the II//MP2/6-31G* level, are also in accord with experiment. The formation of1a and1b by association of B4H8 and CO is computed to be exothermic by 22.8 and 22.2 kcal/mol, respectively, at the MP2(Full)/6-31G*//MP2(Full)/6-31G* + ZPE(6-31G*) level of theory. The Lewis acid strength of B4H8 toward CO is comparable to that of BH3.  相似文献   

7.
The pathways of migration of the double bond in the 1-methoxy-2-propene molecule with participation of a hydroxide ion were investigated by theab initio RHF/6-31+G* and MP2/6-31+G* methods. Stationary points corresponding to complexes between the molecule under study and the hydroxide ion and between the corresponding carbanion and a water molecule were found on the potential energy surfaces of the proton transfer reactions. As in the propene molecule, migration of the double bond in the 1-methoxy-2-propene molecule can occur in the gas phase by the mechanism of intramolecular proton transfer involving the proton of the hydroxide ion. Conformational isomerism of the initial molecule and reaction products was considered. The proposed mechanism of 1,3-hydrogen shift involving the proton-containing base suggests the formation of bothE- andZ-products with predominance of the latter irrespective of the nature of the substituent. In this case the direction of multiple bond migration will be completely determined by the energy difference between the initial reagents and final products.  相似文献   

8.
The pathways of migration of the double bond in heteroallylic systems XCH2CH=CH2 (X =NMe2, OMe, PMe2, and SMe) with participation of hydroxide ion were investigated by theab initio RHF/6-31+G* and MP2/6-31+G* methods. The results are compared with those of analogous calculations of the systems with X=H, Me. Conformational isomerism of the initial molecules and reaction products, as well as the structure of intermediate carbanions, are considered. Increased acidity of compounds containing atoms of the third-row elements is explained in terms of a negative hyperconjugation model, 1,3-Hydrogen shift with participation of hydroxide ion in the system XCH2CH=CH2 results in double bond migration toward substituent X to form 1-hetero-1-propenes XCH=CHMe. Comparison of the energies of the final products indicates thermodynamic preferableness of the formation ofE-isomers. At the same time, in the case of substituents with atoms of the second-row elements the interaction of σ-bonds of the substituents and the p-AO of the terminal C atom additionally stabilizesZ-isomers of the carbanions and can be the reason for preferable kinetically controlled formation of these isomers. If the subsituents contain atoms of the third-row elements, the formation ofE-isomers of 1-hetero-1-propenes becomes both kinetically and thermodynamically predominant.  相似文献   

9.
Quantum-chemical calculations have been carried out by the RHF/6-31G(d) and MP2/6-31+G(d) methods of molecules of N-chloromethylpyrrolidone, N-chloromethylcaprolactam, N-chloromethyl-succinimide, and N-chloromethylphthalimide with full optimization of their geometry, and also N-chloromethylpyrrolidone molecule by the RHF/6-31G(d) method at various angles of rotation of the CH2Cl group around the C―N bond. It was shown that the lower frequencies of the 35Cl NQR of the first two molecules in comparison with the later are mainly determined by the high populations of the p σ -orbitals of their Cl atoms. The population of the orbitals of the unshared electron pair of the N atom is practically unchanged on rotating the CH2Cl group, but the N atom polarizes the C―Cl bond in the indicated molecule. This does not confirm the supposed p,σ*-conjugation in the Cl―C―N grouping. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1537–1544, October, 2008.  相似文献   

10.
Ab initio MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3 + cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0–8 kcal mol−1 and those of the remaining four structures lie in the range 20–40 kcal mol−1. Two most favorable isomers, aC 2v isomer with a dicoordinate oxygen atom, planar six-membered cycle, and one terminal fluorine atom and a pyramidalC 3v isomer with a tricoordinate oxygen atom and three bridging fluorine atoms, are almost degenerate in energy. The barriers to rearrangements with the breaking of one fluorine bridge are no higher than 4 kcal mol−1, except for the pyramidalC 3v isomer (∼16 kcal mol−1). On the contrary, rearrangements with the breaking of the O−Be bond occur with overcoming of a high energy barrier (∼24 kcal mol−1). A planarD 3h isomer with a tricoordinate oxygen atom and linear O−Be−H fragments was found to be the most favorable for the OBe3H3 + cation, a hydride analog of the OBe3F3 + ion; the energies of the remaining five isomers are more than 25 kcal mol−1 higher. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 420–430, March, 1999.  相似文献   

11.
12.
Protonated forms of the molecules of ethylene derivatives with the general formula C2X2Y2 (X=Y=H) (1), F (2), CH3 (3) CH3 (4); X=F, Y=H:cis-(5)trans- (6)) were calculated by theab initio MP2/6-31 G* method with full geometry optimization. The minima and saddle points located on the potential energy surface (PES) of the protonated ethylene molecule correspond to the stationary states and transition states of proton migration, respectively. The stationary states are characterized by a nonclassical geometry of carbocations similar to that of π-complexes, whereas the transition states have a classical structure. Unlike1, the carbocations of molecules2–6 have the classical structure. The saddle points on the PES of the ethylene derivatives correspond to the structures of the π-complex type, which are the transition states of proton migration between the C atoms of the ethylene bond. The barrier to rotation about, the C−C bond depends essentially on the substituent nature. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1333–1337, August, 2000.  相似文献   

13.
The possibility of proton attack on various centers in pyrrolo[2,1-b]thiazole (1) has been evaluated. The results of semiempirical (MNDO, AM1, and PM3) andab initio (6-31G*) calculations were compared. The MNDO and 6-31G* methods give “chemically proper” and qualitatively coincident results. Analysis of the intramolecular (geometric and electronic) reorganization of molecule1, depending on the protonation center, has been carried out. The most probable attack centers, depending on the mechanism of electrophilic reaction, have been recognized. The energy parameters of intramolecular prototropic rearrangements in cation1 and the “blocking” factor value of methyl groups reducting the corresponding complex stability have been evaluated. It has been established that the relative stability of the protonated forms does not change on going to pyrrolo[2,1-b]selenium- and telluriumazoles, but the range of variations is considerably narrowed in the series S>Se>Te. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1707–1711, October, 2000.  相似文献   

14.
Pentacoordination of carbon atom in bicyclic organic compounds of the pentalene type was studied by theab initio RHF/6-31G** and MP2(full)/6-31G** methods. It was shown that intramolecularS N 2 reactions with energy barriers within the energy scale of NMR spectroscopy can occur in systems in which a linear orientation of the attacking and leaving groups is realized. The barrier to the intramolecular nucleophilic substitution reaction in 2,3-dihydro-3-formylmethylenefuran is 36.9 (RHF) and 27.7 kcal mol−1 (MP2) and decreases to 16.4 and 19.4 kcal mol−1, respectively, in the case of diprotonation at the O atoms in this system. For model pentalene type compounds containing electron-deficient B atoms in the ring, theab initio calculations predict a further decrease in the barrier height (down to less than 10 kcal mol−1). Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1246–1256, July, 1999.  相似文献   

15.
Quantum chemical calculations at the HF/6-31G* and B3LYP/6-31G* levels have been performed on five explosive sensitizers, ethyl nitrate (EN), n-propyl nitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN) and tetraethylene glycol dinitrate (TEGDN). Theoretical study has made a detailed molecular-level investigation of the title compounds. Based on the Mulliken populations and bond lengths, the fission of the O2–N3 can be acceptable reasonably. Charge distribution analysis indicates that the five nitrates produce NO2 gas during the dissociation of the O2–N3 weak bond. We also order the relative thermal stability of five nitrates on the basis of frontier orbital energy (E HOMO, E LUMO) and energy gap (ΔE = E HOMOE LUMO).  相似文献   

16.
Ab initio orbital calculations on phenol, nitrobenzene, and 2-nitroresorcinol have been performed with the GAUSSIAN 92 series of programs. Initial RHF/6-31G* and RHF/6-31G** optimizations were followed by second-order MØller-Plesset MP2(FC)/6-31G* optimizations. The general geometrical features of these molecules, and, in particular, the characteristic changes as going from phenol to 2-nitroresorcinol and from nitrobenzene to 2-nitroresorcinol are in good agreement with recent gas-phase electron diffraction studies and with the notion of resonance-assisted intramolecular hydrogen-bond formation in 2-nitroresorcinol.  相似文献   

17.
The proton affinity (PA) energies of fluoro derivatives of benzene, toluene, andm-xylene were obtained fromab initio MP2-FC/6-31G* calculations and compared with experimental results. Protonated forms of the molecules, resulting from different ways of proton addition, were studied. Relative concentrations of isomeric arenonium ions were calculated and compared with the results of NMR studies on arenonium ions in solutions. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1847–1849, November, 2000.  相似文献   

18.
The gradient pathways of the reactions of nucleophilic addition of H2O and HF molecules to formaldehyde in the gas phase and in the XH…H2CO…HC(O)OH complex (X=OH, F) were calculated by theab initio RHF/6-31G**, MP2(fc)/6-31G**, and MP2(full)/6-311++G** methods. Both reactions proceed concertedly. The formation of H-bonded bimolecular pre-reaction complexes is the initial stage of the gas-phase reactions; at the same time, no indications of the formation of stable π-complexes were found on the potential energy surfaces of systems under study. The calculated energy barriers to the gasphase reactions exceed 40 kcal mol−1, while those to reactions in the complex XH…H2CO…HC(O)OH (X=OH, F) become more than halved. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2146–2154, November, 1998.  相似文献   

19.
Ab initio calculations with full optimization of geometry have been carried out with the 6–31 G* basis set on tetrafluoroethylene (with the unrestricted Hartree-Fock method—UHF and the second-order Moller-Plesset perturbation theory—MP2) and tetratrifluoromethylethylene (with UHF) molecules in the singlet ground and triplet biradical states. The symmetry of the tetrafluoroethylene molecule in the triplet biradical state was demonstrated to differ from that of ethylene (D 2d ) due to the deviation of fluorine atoms from CCFF plane. The MP2 optimized geometries of ethylene and tetrafluoroethylene were used for higher level calculations (MP3, MP4, CCSD). The energy of the ground state singlet-biradical triplet splitting decreases in the series: ethylene>tetrafluoroethylene> tetratrifluoromethylethylene. These data on energy splitting explain the increase in reactivity toward the [2+2]-cycloaddition on going from ethylene to tetrafluoroethylene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 605–607, April, 1998.  相似文献   

20.
The geometry-optimized molecular structures and total energies of 4- to 6-membered cycloalkadienes, and of a number of their monoand dimethoxy derivatives, have been calculated by ab initio (HF/6-31G*, MP2/6-31G*//HF/6-31G*) and DFT (B3LYP/6-31G*) methods. By comparison with available experimental data, the reliability of these computational methods for an estimation of the relative stabilities (enthalpies) of the isomeric forms of the title compounds was tested. The experimental enthalpies of isomerization proved to agree best with the respective theoretical data based on the mean of the HF/6-31G* and B3LYP/6-31G* energies. The theoretical calculations were then extended to several isomeric methoxy-substituted cycloalkadienes, for which no previous thermodynamic data exist. Some structural features of the title dienes were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号