首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The present paper is concerned with an experimental study of the process of gas dissolution behind a shock wave in a liquid with bubbles of a readily soluble gas, the influence of gas dissolution on the wave evolution, and strengthening of the shock wave after reflection from a solid wall. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 19–24, September–October, 1998.  相似文献   

2.
The process of evolution and reflection of shock waves of moderate amplitude from a rigid boundary in a porous medium saturated by a liquid with bubbles of a soluble gas is studied experimentally. Experimental values of the amplitude and velocity of the reflected wave are compared with the calculated results obtained using mathematical models. The process of dissolution of gas bubbles in the liquid behind the shock wave is studied. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 91–102, September–October, 2000.  相似文献   

3.
The propagation of shock waves in a system consisting of a deformable medium with damage and a two-phase liquid with gas or vapor bubbles are studied. The nonlinear interaction of the media are modeled taking into account phase transformations in the liquid and the damage kinetics of the deformable medium. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 139–152, January–February, 2006.  相似文献   

4.
A. Abe  H. Mimura  H. Ishida  K. Yoshida 《Shock Waves》2007,17(1-2):143-151
The effect of shock pressures on the inactivation of a marine Vibrio sp. was studied experimentally and numerically. In the experiment, an aluminum impactor plate accelerated by a gas gun was used to induce shock waves in a sealed aluminum container with cell suspension liquid inside. The shock pressures in the container were measured by a piezofilm gauge. Several 10–100 MPa of pressure were measured at the shock wave front. An FEM simulation, using the Johnson–Cook model for solid aluminum and the Tait equation for the suspension liquid, was carried out in order to know the generation mechanism of shock pressures in the aluminum container. The reflection, diffraction and interaction of shock waves at the solid–liquid boundaries in the aluminum container were reasonably predicted by the numerical simulation. The changes in shock pressures obtained from the computational simulation were in good agreement with those from the experiment. The number of viable cells decreased with the increase of peak pressures of the shock waves. Peak pressures higher than 200 MPa completely inactivated the cells. At this pressure, the cell structures were deformed like the shape of red blood cells, and some proteins leaked from the cells. These results indicate that the positive and negative pressure fluctuations generated by shock waves contribute to the inactivation of the marine Vibrio sp.   相似文献   

5.
The breakup of a liquid droplet induced by a high speed gas stream is a typical multiphase flow problem. The shock/droplet interaction is the beginning stage of the droplet breakup. Therefore, investigation of the shock/droplet interactions would be a milestone for interpreting the mechanism of the droplet breakup. In this study, a compressible multiphase solver with a five-equation model is successfully developed to study shock/water column interactions. For code validation, interface-only, gas–gas shock tube, and gas–liquid shock tube problems are first computed. Subsequently, a planar shock wave interacting with a water column is simulated. The transmitted wave and the alternative appearances of local high- and low-pressure regions inside the water column are observed clearly. Finally, a planar shock wave interacting with two water columns is investigated. In this work, both horizontal and vertical arrangements of two water columns are studied. It is found that different arrangements can result in the diversity of the interacting process. The complex flow structures generated by shock/water column interactions are presented by flow-visualization techniques.   相似文献   

6.
A thin liquid sheet present in the shear layer of a compressible gas jet is investigated using an Eulerian approach with mixed-fluid treatment for the governing equations describing the gas–liquid two-phase flow system, where the gas is treated as fully compressible and the liquid as incompressible. The effects of different topological configurations, surface tension, gas pressure and liquid sheet thickness on the flow development of the gas–liquid two-phase flow system have been examined by direct solution of the compressible Navier–Stokes equations using highly accurate numerical schemes. The interface dynamics are captured using volume of fluid and continuum surface force models. The simulations show that the dispersion of the liquid sheet is dominated by vortical structures formed at the jet shear layer due to the Kelvin–Helmholtz instability. The axisymmetric case is less vortical than its planar counterpart that exhibits formation of larger vortical structures and larger liquid dispersion. It has been identified that the vorticity development and the liquid dispersion in a planar configuration are increased at the absence of surface tension, which when present, tends to oppose the development of the Kelvin–Helmholtz instability. An opposite trend was observed for an axisymmetric configuration where surface tension tends to promote the development of vorticity. An increase in vorticity development and liquid dispersion was observed for increased liquid sheet thickness, while a decreasing trend was observed for higher gas pressure. Therefore surface tension, liquid sheet thickness and gas pressure factors all affect the flow vorticity which consequently affects the dispersion of the liquid.   相似文献   

7.
The propagation of shock waves in a medium with a nonuniform distribution of the parameters is the subject of recently published research [1–3]. The present paper deals with the problem of the gas flow ahead of the forward point of a blunt body moving at supersonic speed in air with variable parameters. The chemical reaction processes behind the shock front are taken into account. As a result of numerical calculations by the method of characteristics with isolation of the forward shock the time-dependent position of the shock front and the distributions of the composition and gas dynamic parameters in the shock layer are found. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 170–172, November–December, 1986.  相似文献   

8.
Shock wave structure in a bubbly mixture composed of a cluster of gas bubbles in a quiescent liquid with initial void fractions around 10% inside a 3D rectangular domain excited by a sudden increase in the pressure at one boundary is investigated using the front tracking/finite volume method. The effects of bubble/bubble interactions and bubble deformations are, therefore, investigated for further modeling. The liquid is taken to be incompressible while the bubbles are assumed to be compressible. The gas pressure inside the bubbles is taken uniform and is assumed to vary isothermally. Results obtained for the pressure distribution at different locations along the direction of propagation show the characteristics of one-dimensional unsteady shock propagation evolving towards steady-state. The steady-state shock structures obtained by the present direct numerical simulations, which show a transition from A-type to C-type steady-state shock structures, are compared with those obtained by the classical Rayleigh–Plesset equation and by a modified Rayleigh–Plesset equation accounting for bubble/bubble interactions in the mean-field theory.   相似文献   

9.
C. Wang  Z. Y. Han  M. Situ 《Shock Waves》2006,15(2):129-135
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D “line-flame ignition” and 2-D “plane-flame ignition”, were investigated. In the condition of 3-D “line-flame ignition” of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D “plane-flame ignition” of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30–90m/s and the delay time of ignition is estimated in the range of 0.12–0.29ms. PACS 47.40.Nm; 82.40.FpPart of this paper was presented at the 5th International Workshop on Shock/Vortex Interaction, Kaohsiung, October 27–31, 2003.  相似文献   

10.
Propagation of a stepwise shock wave in a liquid containing spherical gas-liquid clusters is experimentally studied. Measured results are compared with available theoretical models. It is shown that resonant interaction of gas-liquid clusters in the wave can increase the amplitude of oscillations in the shock wave. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 50–60, May–June, 2005.  相似文献   

11.
The transition from regular to Mach interaction is investigated in connection with the interaction of two plane weak or moderate shock waves of different intensity in a two-phase gas-liquid medium over the entire range of gas contents. A nonmonotonic dependence of the transition limit and the flow parameters on the gas content is detected. The investigation extends the results of [1] corresponding to the reflection of a shock wave from a wall. At intermediate gas contents in the case of opposing shock waves, analogous to the normal reflection of a shock wave from a solid wall, the results are in agreement with [2]. In the case of weak shock waves non-linear asymptotic expansions [3] are employed. In the extreme cases of single-phase media the results coincide with the findings of [3, 4]. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 172–174, November–December, 1986.  相似文献   

12.
The dynamics of particles of the disperse phase in a turbulent gas flow in planar shock waves sliding along a solid surface with a trapezoid cavity is examined numerically. Lifting of particles from the cavity walls is calculated in the approximation of a rarefied gas suspension. It is shown that the intensity of the transient shock wave and the initial positions of particles have a significant effect on the particle-lifting properties. The height of particle lifting is found to nonmonotonically depend on the initial streamwise coordinate and shock-wave Mach number. It is shown that zones of aggregation and subtraction of particles may be formed at the cavity bottom. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 24–34, January–February, 2007.  相似文献   

13.
An equation is proposed for the pulsation of a single cavity in an abnormally compressible bubbly liquid which is in pressure equilibrium and whose state is described by the Lyakhov equation. In the equilibrium case, this equation is significantly simplified. Numerical analysis is performed of the bubble dynamics and acoustic losses (the profile and amplitude of the radiation wave generated on the bubble wall from the side of the liquid). It is shown that as the volumetric gas concentration k0 in the equilibrium bubbly medium increases, the degree of compression of the cavity by stationary shock wave decreases and its pulsations decrease considerably and disappear already at k0 = 3%. In the compression process, the cavity asymptotically reaches an equilibrium state that does not depend on the value of k0 and is determined only by the shock-wave amplitude. The radiation wave takes the shape of a soliton whose amplitude is much smaller and whose width is considerably greater than the corresponding parameters in a single-phase liquid. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 51–57, May–June, 2007.  相似文献   

14.
Second-order differential equations of the hyperbolic type are derived for describing the local law of shock wave propagation. The shock waves are assumed to be two-dimensional unsteady in a stationary gas flow and three-dimensional steady in a supersonic flow. The behavior of the characteristics of these equations is investigated as a function of the governing flow parameters and their relative position with respect to the typical bicharacteristics of the characteristic cone behind the shock is analyzed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 159–165, May–June, 2000.  相似文献   

15.
The transient regime in gas flow past a stepwise accelerated body is analyzed by the method of singular perturbations at small Froude numbers. A marked effect of the initial conditions on the shock layer gas flow is demonstrated. The problem of flow past a wedge is solved in quadratures. St.Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–121, January–February, 1997.  相似文献   

16.
A method is presented for determining the dependence of the probability of heterogeneous recombination γw from results of measurements of the heat flux Qw to the surface of a catalytic sensor exposed to a pulsed supersonic flow of gas dissociated by an incident shock wave propagating in a shock tube. It is shown that the accuracy of the determination of γw depends not only on the accuracy of the measurements in the experiment, but also on the results of mathematical modeling of the flow of the dissociated gas over the surface of the body. Results from an analysis of an experiment are presented. Institute of Applied Mathematics and Mechanics at Tomsk University, Tomsk 634050. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 110–117, July–August, 1998.  相似文献   

17.
The head-on collision of a combustion front with a closely packed bed of ceramic-oxide spheres was investigated in a vertical 76.2 mm diameter tube containing a nitrogen diluted stoichiometric ethylene–oxygen mixture. A layer of spherical beads in the diameter range of 3–12.7 mm was placed at the bottom of the tube and a flame was ignited at the top endplate. Four orifice plates spaced at one tube diameter were placed at the ignition end of the tube in order to accelerate the flame to either a “fast-flame” or a detonation wave before the bead layer face. The mixture reactivity was adjusted by varying the initial mixture pressure between 10 and 100 kPa absolute. The pressure before and within the bead layer was measured by flush wall-mounted pressure transducers. For initial pressures where a fast-flame interacts with the bead layer peak pressures recorded at the bead layer face were as high as five times the reflected Chapman–Jouget detonation pressure. The explosion resulting from the interaction developed by two distinct mechanisms; one due to the shock reflection off the bead layer face, and the other due to shock transmission and mixing of burned and unburned gas inside the bead layer. The measured explosion delay time (time after shock reflection from the bead layer face) was found to be independent of the incident shock velocity. As a result, the explosion initiation is not the direct result of the shock reflection process but instead is more likely due to the interaction of the reflected shock wave and the trailing flame. The bead layer was found to be very effective in attenuating the explosion front transmitted through the bead layer and thus isolating the tube endplate. This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

18.
The diffusion stability of gas bubbles in one-fraction and two-fraction clusters subjected to an acoustic field is studied. For a one-fraction cluster, numerical values were obtained for the initial gas concentrations in the liquid at which the bubble tends to one of two equilibrium states because of diffusion processes between the bubble and the ambient liquid. It is found that a two-fraction cluster tends to become a one-fraction cluster. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 40–48, July–August, 2007.  相似文献   

19.
A method of theoretical investigation of the flow field in a two-dimensional (plane-parallel or axisymmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio in the plane jet, and ratio of specific heats of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83, May–June, 2006.  相似文献   

20.
The various oblique shock wave reflection patterns generated by a moving incident shock on a planar wedge using an ideal quantum gas model are numerically studied using a novel high resolution quantum kinetic flux splitting scheme. With different incident shock Mach numbers and wedge angles as flow parameters, four different types of reflection patterns, namely, the regular reflection, simple Mach reflection, complex Mach reflection and the double Mach reflection as in the classical gas can be classified and observed. Both Bose–Einstein and Fermi–Dirac gases are considered.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号