首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, cost-effective and environmental friendly analytical method was developed for the quantification of erythromycin in tablet formulation using transmission Fourier Transform Infrared (FT-IR) spectroscopy for routine quality control analysis. There is no need of sample preparation except pellet formation for FT-IR analysis. Use of solvent was totally avoided in this method. Calibration was carried out by using simple Beer’s law in the FT-IR region between 1743 and 1697 cm−1. The excellent coefficient of determination (R2 = 0.998) was achieved with 0.0247 and 1.14 root mean square error of prediction (RMSEP) and root mean square error of cross validation (RMSECV), respectively. The results of the study revealed that the transmission FT-IR spectroscopy could be effectively used for rapid determination of active ingredients like erythromycin in pharmaceutical formulations to control the quality of finished products.  相似文献   

2.
Tubino M  de Souza RL 《Talanta》2006,68(3):776-780
A quantitative analytical method for the determination of diclofenac in pharmaceutical preparations by diffuse reflectance in the visible region of the spectrum is presented. The color reaction is done directly in the measuring cell immediately after mixing, using small volumes of the analyte solution, of the reagent and of the buffer solutions. All reflectance measurements were carried out in a home made reflectometer equipped with a red LED as light source and a LDR as detector. The calibration curves were constructed from 1.0 to 18 mg mL−1 (about 3.0 × 10−3 to 5.5 × 10−2 mol L−1) of sodium diclofenac or of potassium diclofenac in the analytical solution, with typical correlation coefficients equal to 0.999. The detection limit was estimated to be about 0.7 mg mL−1 (2 × 10−3 mol L−1). The method was applied to determine diclofenac in solid and liquid pharmaceutical preparations. The R.S.D. varied from 2% to 4% depending of the sample. The results were compared with those obtained with the HPLC procedure recommended by the United States Pharmacopoeia using the statistical Student's t-test procedure.  相似文献   

3.
Electrokinetic supercharging (EKS) is defined as a technique that combines electrokinetic sample injection with transient ITP. Quantitative repeatability of EKS‐CZE and the other CE methods using electrokinetic sample injection process is usually inferior in comparison with the CE methods using hydrodynamic or hydrostatic injection. This is due to some effects, such as the temperature change and the convection of the sample solution in the reservoir, as well as the change of the distance between an electrode and a capillary end (Dec). In particular, we have found that the Dec change might most seriously affect the repeatability, especially when the electrode is a thin Pt wire that could be unintentionally bent during sampling. By using a Teflon spacer to fix Dec to 1.1 mm, the RSD of peak area (n=5) was decreased from 20 to 3.4% in EKS‐CZE for several metal cations. This Dec dependence of the sample amount injected was supported by computer simulation using CFD‐ACE+ software. The improved repeatability (down to 5.1% at n=5, averaged RSD for Co2+, Li+, Ni2+, Zn2+ and Pb2+) was also experimentally attained by increasing the Dec to ca. 20 mm, which was also effective to obtain high sensitivity. Since the temperature and the convection effects on the repeatability are comparatively small in a proper laboratory environment, these effects were estimated from the EKS‐CZE experiments using conditions such as warming and agitating the sample solution during EKS process. Finally, EKS‐CZE was applied to the detection of ions from atmospheric electrolytes in high‐purity water exposed to ambient air for 2 h. The microgram per liter levels of anions (chloride, sulfate, nitrate, formate, acetate and lactate) and cations (ammonium, calcium, sodium and magnesium) could be detected using conventional UV detector.  相似文献   

4.
将新型荧光光谱定量分析模型与比率型荧光探针2,3-二氨基萘相结合,发展了一种用于水溶液中亚硝酸根离子( NO-2)定量分析的新方法;并考察了本方法对含有散射物质和吸光物质的浑浊水样中NO-2进行直接定量分析的性能。结果表明,本方法对实际浑浊环境水样中NO-2的检出限和定量下限分别为1.9和5.8 nmol/L,其定量分析结果的回收率在90.8%~103%之间,与高效液相色谱-二极管阵列检测器联用仪的定量分析结果的回收率没有显著性差异。  相似文献   

5.
Applications of Raman spectroscopy in pharmaceutical analysis   总被引:3,自引:0,他引:3  
As Raman spectroscopy enables rapid, non-destructive measurements, the technique appears a most promising tool for on-line process monitoring and analysis in the pharmaceutical industry. This article gives a short introduction to Raman spectroscopy and presents several applications in the pharmaceutical field.  相似文献   

6.
A simple stopped-flow injection system with spectrophotometric detection was proposed for the determination of nicotinamide (NAM) in pharmaceutical formulations. In this system cyanogen chloride formed from the combination of an acidic KSCN with the NaClO streams reacts with injected NAM to form glutaconic aldehyde. Then the product of these three components was coupled with another buffered (pH 3.5) stream of barbituric acid and directed towards the detector. A 45 s after sample injection the pump was stopped for 130 s. During this time the reactants in the flow cell were provided with the required temperature (40 °C) by placing the cell in a home made cell jacket to increase the yield of the polymethine dye product. Eventually, the absorbance of the formed pink color dye was monitored spectrophotometrically at 560 nm and NAM in the concentration range of 1.0–25.0 μg/mL (R = 0.9974 and D.L = 0.5 μg/mL) was determined. The results obtained by this method were compared statistically and agree with those obtained by the method described in the British Pharmacopoeia.  相似文献   

7.
van Staden JK  Tsanwani MM 《Talanta》2002,58(6):1095-1101
A simple method for the rapid determination of paracetamol in pharmaceutical formulations is described. The method involves oxidation of paracetamol by potassium hexacyanoferrate(III) and a subsequent reaction with phenol in the presence of ammonia. The blue complex formed is measured at 630 nm. The system has a sample frequency of 27 samples per h with a detection limit of 0.2 mg l−1. The calibration curve is linear up to 60 mg l−1 with a relative standard deviation of 1.2% (n=10).  相似文献   

8.
Characterization of substances and formulations with respect to purity and stability is a major analytical chemical task during product development in the pharmaceutical industry. The importance of separation methods, especially liquid chromatography, is shown with some examples from work with omeprazole. The role of mass spectrometry (MS) for structure elucidation is emphasized. Dissolution testing comprises a large number of samples and adaptation to standardized procedures is important. Work is exemplified with dissolution testing of felodipine. Automation and robots with multivariate calibration are necessary approaches. Macromolecular characterization is exemplified from the fields of biomolecules and macromolecular excipients. Separation methods and MS are important tools. New challenges in the area of process analytical chemistry are discussed and chemometrics will play an important role. In all fields method validation is stressed, but should not require more power than necessary in a specification.  相似文献   

9.
A simple and convenient flow injection-chemiluminescence (FI-CL) method for the determination of cysteine is reported, based on a fast and strong CL in a basic luminol-cysteine-NaIO4 solution. The linear range was 1.0×10−8 to 1.0×10−6 M with a detection limit (3s) of 5×10−9 M, which was 100 times more sensitive than previously reported CL methods. Singlet oxygen, hydroxyl radical and hydrogen peroxide were suggested to be produced in this reaction and were responsible for the CL of cysteine. This simple method has been successfully applied for the determination of cysteine in a pharmaceutical formulation.  相似文献   

10.
In this work, a flow injection system with spectrophotometric detection was developed for the determination of lithium in pharmaceutical formulations used in the treatment of bipolar disorder. Reaction between Quinizarine (1,4-dihydroxyanthraquinone) and Li(I) ion in alkaline medium containing dimethylsulfoxide (DMSO) was explored for this purpose. The flow system was optimized regarding to its chemical (DMSO, Quinizarine and NaOH concentrations and sample pH) and physical parameters (sample loop volume, carrier flow rate and reactor length) in order to establish better conditions in terms of sensitivity and sampling frequency. The results obtained showed that the concentration of DMSO in the reagent solution presents remarkable influence on the magnitude of analytical signal. Chemical species that could be found in the formulations such as Na(I), K(I), Mg(II), Ca(II), Ti(IV), Cl, CO32− e sodium dodecylsulfate were tested as possible interfering ions. Among them, only non-monovalent cations presented noticeable interference on lithium signal. However, they were not found in concentrations high enough to cause interference in the determination of lithium in the samples. Sample preparation was performed by sonicating a slurry prepared by dispersing 100 mg of powdered sample in 15 mL of 0.10 mol L−1 HCl solution. Results obtained by developed methodology were not statistically different from those obtained by flame emission spectrometry. In the optimized conditions the method presented a linear range of 5-40 mg L−1 and a relative standard deviation of 3.6% at 5 mg L−1 Li concentration. Detection and quantification limits were 0.54 and 1.8 mg L−1, respectively. Sampling frequency, calculated as the time interval passed between two consecutive injections, was 60 samples per hour. The methodology was successfully applied in the determination of lithium in three commercial samples.  相似文献   

11.
利用激光诱导击穿光谱(LIBS)技术对土壤中铬元素的含量进行了定量分析研究.由于土壤成分复杂,光谱谱线存在较严重的重叠干扰,若采用一元回归方法分析常得不到理想结果.为了更充分有效地利用光谱中信息,以土壤中Cr Ⅰ 425.43 nm和Fe Ⅰ 425.07 nm谱线的积分强度为自变量,Cr元素浓度为因变量,建立交叉降维近似多元非线性回归、多元二次非线性回归和平方降维近似多元非线性回归模型.对比分析表明,当添加Cr和Fe元素特征谱线强度交叉项影响时,所建立的多元二次非线性回归模型效果最佳,预测浓度与实际参考浓度之间线性关系达到0.9943,预测4个验证样品的相对误差分别为3.57%,0.76%,7.66%和2.24%.  相似文献   

12.
Fourier transform infrared spectroscopy has been used for the quantitative determination of dodecylbenzenesulfonate and tripolyphosphate in solid commercial samples of detergents. The only sample treatment consisted of a separation with ethanol. Dodecylbenzenesulfonate was dissolved and tripolyphosphate remained in the insoluble fraction. The method consisted of transmission measurements of KBr pellets. Precision, recovery and determination using both calibration line and standard addition have been optimized. The determination of dodecylbenzenesulfonate has been compared with the UV method.  相似文献   

13.
A novel flow-injection irreversible biamperometric method is described for the determination of ethamsylate. The proposed method is based on the oxidation of ethamsylate at one platinum electrode and the reduction of permanganate at another to form an irreversible biamperometric detection system. Ethamsylate can be determined over the range 1.0×10−6-1.0×10−4 mol l−1 with a sample measurement frequency of 180 samples h−1. The detection limit for ethamsylate is 4.0×10−7 mol l−1. The stability of the proposed method is shown by a RSD of 0.52% for 11 replicate determinations of 2.0×10−5 mol l−1 ethamsylate. The proposed method was applied to the determination of ethamsylate in pharmaceutical preparations.  相似文献   

14.
15.
Based on the electrocatalytic oxidation of levodopa at gold electrode and the reduction of permanganate at platinum electrode, a novel flow injection irreversible biamperometric method is developed for the determination of levodopa under the potential difference of 0 V imposed between two electrodes. In H2SO4 solution, the linear relationships between currents and the concentrations of levodopa are obtained in the range from 0.04 mg/L to 20 mg/L with the detection limit of 0.012 mg/L. The proposed method is applied to the determination of levodopa in pharmaceutical preparations.  相似文献   

16.
A new separation method based on a novel reversed-phase sequential injection chromatography (SIC) technique was used for simultaneous determination of ambroxol hydrochloride and doxycycline in pharmaceutical preparations in this contribution.The coupling of short monolith with SIA system results in an implementation of separation step to until no-separation low-pressure method.A Chromolith® Flash RP-18e, 25-4.6 mm column (Merck, Germany) and a FIAlab® 3000 system (USA) with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-water (20:90, v/v), pH 2.5 adjusted with 98% phosphoric acid, flow rate 0.48 ml min−1, UV detection was at 213 nm.The validation parameters have shown good results: linearity of determination for both compounds including internal standard (ethylparaben) >0.999; repeatability of determination (R.S.D.) in the range 0.5-5.4% at three different concentration levels, detection limits in the range 0.5-2.0 μg ml−1, and recovery from the pharmaceutical preparation in the range 99.3-99.9%. The chromatographic resolution between peak compounds was >5.0 and analysis time was <9 min under the optimal conditions. The method was found to be applicable for routine analysis of the active compounds ambroxol hydrochloride and doxycycline in various pharmaceutical preparations.  相似文献   

17.
Khaled E 《Talanta》2008,75(5):1167-1174
A simple, rapid and accurate method for the spectrophotometric determination of terfenadine has been developed. The proposed method based on the charge-transfer reactions of terfenadine, as n-electron donor, with 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as π-acceptors to give highly colored complexes. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the highest sensitivity. Beer's law is obeyed over the concentration ranges of 3–72, 3–96, 12–168 and 24–240 μg mL−1 terfenadine using TCNQ, TCNE, DDQ and p-CLA, respectively, with correlation coefficients 0.9999, 0.9974, 0.9997 and 0.9979 and detection limits 0.3, 0.4, 2.6 and 12.3 μg mL−1, for the reagents in the same order. DDQ and p-CLA react spontaneously with terfenadine to give colored complexes that can be applied for the flow injection analysis of terfenadine in the concentration ranges 2.4–120 and 24–240 μg with correlation coefficients 0.9990 and 0.9985 and detection limits 0.8 and 2.7 μg for DDQ and p-CLA, respectively, in addition to the high sampling through output of 40 sample h−1.  相似文献   

18.
We developed a novel hybrid sample injection mode (HSIM) that presents the combination of electrokinetic injection and vacuum injection to enhance detection sensitivity in CZE. Samples were introduced using both vacuum and electrokinetic injections simultaneously, with a water plug injected into the capillary prior to sample introduction (i.e. similarly to field-amplified sample injection, FASI). Using a sample mixture containing an anti-fouling agent applied to ship hulls, pyridine-triphenylborane and its degradation products (diphenylborinic acid, phenylboronic acid, and phenol) dissolved in ACN, the length of water plug, time, and voltage for sample introduction were optimized. The signal intensity (peak height) was found to be up to a 30-fold increased using HSIM by applying 4 kV for 4 s at the inlet end of the capillary as the cathode with supplementary vacuum in comparison with only vacuum injection for 4 s. The LODs (at a S/N of 3) for pyridine-triphenylborane, diphenylborinic acid, phenylboronic acid, and phenol were 0.88, 1.0, 21, and 23 μg/L, respectively. At the level of 0.04 mg/L, the RSDs (n=4, intra-day) for the above analytes were in the ranges of 1.9-11, 4.3-9.2, and 0.34-0.66% for peak area, peak height, and migration time, respectively. The HSIM is a simple and promising procedure useful for enhancing the sensitivity for both low-and high-mobility ions in CZE.  相似文献   

19.
A novel rapid and sensitive analytical method, enhanced chemiluminescence with flow-injection sampling, is described for determination of ciprofloxacin. The method is based on the chemiluminescence reaction of the potassium permanganate–sodium thiosulfate–ciprofloxacin system. An enhanced chemiluminescence reaction was developed, and optimum conditions for CL emission were investigated. The chemiluminescence intensity was linearly dependent on ciprofloxacin concentration in the range 1.0×10−8–1.0×10−5 g mL−1. The detection limit was 4×10−9 g mL−1. The relative standard deviation was 1.8% for eleven measurements of 2.0×10−7 g mL−1 ciprofloxacin standard solution. The new method enables simple, sensitive, and rapid determination of ciprofloxacin and has been successfully used for determination of ciprofloxacin in biological fluids and in ciprofloxacin hydrochloride tablet and injection.  相似文献   

20.
A fast and selective CZE method for the determination of mizolastine and related impurities is described. Response surface methodology was applied to study the influence of phosphate/triethanolamine (TEA) buffer concentration, heptakis(2,3,6-tri-O-methyl)-beta-CD (TMbetaCD) concentration, voltage and temperature. The optimum conditions were: 105 mM phosphate/TEA buffer (pH 3.0) containing 10 mM TMbetaCD, temperature 19 degrees C and voltage 30 kV. Validation of the method was performed in drug substance and drug product. Robustness was evaluated using a Plackett-Burman design, including pH among the considered factors. Applying the optimal conditions, the nine peaks were baseline separated in about 10 min. The method was applied to the quality control of mizolastine in controlled-release tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号