首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quasilinear absorption and luminescence spectra of 1,2-benzotetraphene were obtained in polycrystalline matrices at 77 K. Tne energies of successive excited singlet states as well as the energy of the lowest excited triplet state were found experimentally and compared with those calculated by the PPP CI method. The fluorescence lifetime and quantum yield were determined experimentally. Moreover, the radiationless transition probabilities, lifetime of triplet state and phosphorescence quantum yield were estimated employing the Siebrand-Williams model. The results obtained suggest that radiationless ISC processes are the main deactivation channel of the S1 and T1 states. The vibrational analysis of quasilinear absorption and luminescence spectra was performed and fundamental frequencies of ground and first excited singlet states were determined.  相似文献   

2.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

3.
It is possible to study directly the absorption time-profiles of short-lived excited singlet states by sampling the transient excitation spectra for fluorescence from upper states. This approach has many advantages over direct absorption measurements, since the effects of triplet state absorption can be suppressed and the population time-profiles of excited singlet states can be studied in detail. The first direct measurements are reported of singlet state absorption time profiles in a number of aromatic aza- and carbonyl compounds.  相似文献   

4.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

5.
Visible light-harvesting C(60)-bodipy dyads were devised as universal organic triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion. The antennas in the dyad were used to harvest the excitation energy, and then the singlet excited state of C(60) will be populated via the intramolecular energy transfer from the antenna to C(60) unit. In turn with the intrinsic intersystem crossing (ISC) of the C(60), the triplet excited state of the C(60) will be produced. Thus, without any heavy atoms, the triplet excited states of organic dyads are populated upon photoexcitation. Different from C(60), the dyads show strong absorption of visible light at 515 nm (C-1, ε = 70400 M(-1) cm(-1)) or 590 nm (C-2, ε = 82500 M(-1) cm(-1)). Efficient intramolecular energy transfer from the bodipy moieties to C(60) unit and localization of the triplet excited state on C(60) were confirmed by steady-state and time-resolved spectroscopy as well as DFT calculations. The dyads were used as triplet photosensitizers for TTA upconversion, and an upconversion quantum yield up to 7.0% was observed. We propose that C(60)-organic chromophore dyads can be used as a general molecular structural motif for organic triplet photosensitizers, which can be used for photocatalysis, photodynamic therapy, and TTA upconversions.  相似文献   

6.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

7.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

8.
The decomposition of 1,2‐dioxetanone into a CO2 molecule and into an excited state formaldehyde molecule was studied in condensed phase, using a density functional theory approach. Singlet and triplet ground and excited states were all included in the calculations. The calculations revealed a novel mechanism for the chemiluminescence of this compound. The triplet excitation can be explained by two intersystem crossings (ISCs) with the ground state, while the singlet excitation can be accounted by an ISC with the triplet state. The experimentally verified small excitation yield can then be explained by the presence of an energy barrier present in the potential energy surface of the triplet excited state, which will govern both triplet and singlet excitation. It was also found that the triplet ground state interacts with both the triplet excited and singlet ground states. A MPWB1K/mPWKCIS approach provided results in agreement with the existent literature. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Modifications of the optical properties of dimethyl-dithienothiophenes due to the oxygen functionalization of the central sulfur atom are investigated. We have measured the absorption, photoluminescence (PL) and PL excitation spectra, the PL quantum efficiencies, and the PL decay times. These experimental results are interpreted and compared with first-principles time-dependent density-functional theory calculations, which predict, for the considered systems, excitation and emission energies with an accuracy of 0.1 eV. It is found that the oxygenation strongly changes optical and photophysical properties. These effects are related to the modifications of the energetically lowest-unoccupied molecular orbital and the energetically second highest occupied one, which change the relative position of the two lowest singlet and triplet excited states.  相似文献   

10.
Attaching stable radicals to organic chromophores is an effective method to enhance the intersystem crossing (ISC) of the chromophores. Herein we prepared perylene-oxoverdazyl dyads either by directly connecting the two units or using an intervening phenyl spacer. We investigated the effect of the radical on the photophysical properties of perylene and observed strong fluorescence quenching due to radical enhanced ISC (REISC). Compared with a previously reported perylene-fused nitroxide radical compound (triplet lifetime, τT=0.1 μs), these new adducts show a longer-lived triplet excited state (τT=9.5 μs). Based on the singlet oxygen quantum yield (ΦΔ=7 %) and study of the triplet state, we propose that the radical enhanced internal conversion also plays a role in the relaxation of the excited state. Femtosecond fluorescence up-conversion indicates a fast decay of the excited state (<1.0 ps), suggesting a strong spin-spin exchange interaction between the two units. Femtosecond transient absorption (fs-TA) spectra confirmed direct triplet state population (within 0.5 ps). Interestingly, by fs-TA spectra, we observed the interconversion of the two states (D1↔Q1) at ∼80 ps time scale. Time-resolved electron paramagnetic resonance (TREPR) spectral study confirmed the formation of the quartet sate. We observed triplet and quartet states simultaneously with weights of 0.7 and 0.3, respectively. This is attributed to two different conformations of the molecule at excited state. DFT computations showed that the interaction between the radical and the chromophore is ferromagnetic (J>0, 0.05∼0.10 eV).  相似文献   

11.
The photophysical and spectroscopic properties of a new class of oligothiophene derivatives, designated as cruciform oligomers, have been investigated in solution (room and low temperature) and in the solid state (as thin films in Zeonex matrixes). The study comprises absorption, emission, and triplet-triplet absorption spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion, and singlet oxygen formation) and lifetimes. The overall data allow the determination of the rate constants for all decay processes. From these, several conclusions are drawn. First, in solution, the main deactivation channels for the compounds are the radiationless processes: S(1) --> S(0) internal conversion and S(1) --> T(1) intersystem crossing. Second, in general, in the solid state, the fluorescence quantum yields decrease relative to solution. A comparison is made with the analogous linear alpha-oligothiophenes, revealing a lower fluorescence quantum efficiency and, in contrast to the normal oligothiophenes, that internal conversion is an important channel for the deactivation of the singlet excited state. Replacement of thiophene by 1,4-phenylene units in the longer-sized cruciform oligomer increases the fluorescence efficiency. The highly efficient generation of singlet oxygen through energy transfer from the triplet state (S(Delta) approximately 1) provides support for the measured intersystem crossing quantum yields and suggests that reaction with this may be an important pathway to consider for degradation of devices produced with these compounds.  相似文献   

12.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

13.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

14.
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.  相似文献   

15.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

16.
2’-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.  相似文献   

17.
A series of newly synthesized Os(II) and Ag(I) complexes exhibit remarkable ratiometric changes of intensity for phosphorescence versus fluorescence that are excitation wavelength dependent. This phenomenon is in stark contrast to what is commonly observed in condensed phase photophysics. While the singlet to triplet intersystem crossing (ISC) for the titled complexes is anomalously slow, approaching several hundred picoseconds in the lowest electronic excited state (S(1) → T(1)), higher electronic excitation leads to a much accelerated rate of ISC (10(11)-10(12) s(-1)), which is competitive with internal conversion and/or vibrational relaxation, as commonly observed in heavy transition metal complexes. The mechanism is rationalized by negligible metal d orbital contribution in the S(1) state for the titled complexes. Conversely, significant ligand-to-metal charge transfer character in higher-lying excited states greatly enhances spin-orbit coupling and hence the ISC rate. The net result is to harvest high electronically excited energy toward triplet states, enhancing the phosphorescence.  相似文献   

18.
The photophysical properties of a series of 3,4-ethylenedioxythiophene oligomers (OEDOT) with up to five repeat units are studied as function of conjugation length using absorption, fluorescence, phosphorescence, and triplet-triplet absorption spectroscopy at low temperature in a rigid matrix. At 80 K, a remarkably highly resolved vibrational fine structure can be observed in the all electronic spectra which reveals that the electronic structure of the oligomers strongly couples to two different vibrational modes (approximately 180 and approximately 50 meV). The energies of the 0-0 transitions in absorption, and fluorescence, phosphorescence, and triplet-triplet absorption all show a reciprocal dependence on the inverse number of repeat units. The triplet energies inferred from the phosphorescence spectra are accurately reproduced by quantum chemical DFT calculations using optimized geometries for the singlet ground state (S0) and first excited triplet state (T1). Using vibrational IR and Raman spectroscopy and quantum chemical DFT calculations for the normal modes in the ground state, we have been able to assign the vibrations that couple to the electronic structure to fully symmetric normal modes. The high-energy mode is associated with the well-known carbon-carbon bond stretch vibration, and the low-energy mode involves a deformation of the bond angles within the thiophene rings and a change of C-S bond lengths. Experimentally obtained Huang-Rhys parameters and theoretical normal mode deformations are used to analyze the geometry changes between T1 and S0 and to semiexperimentally predict the geometry in the S1 state for 2EDOT.  相似文献   

19.
20.
The triplet kinetics of a conjugated polymer, polyspirobifluorene, have been studied using time resolved photoinduced absorption spectroscopy and gated emission delayed fluorescence. Working on isolated polymer chains in dilute solution, we pay particular attention to the buildup and decay of the triplet states following intersystem crossing from the excited singlet state. Confirmation of intersystem crossing as a monomolecular cold process has been made. At high excitation powers an initial fast decay of the triplet has been observed; this is attributed to intrachain triplet-triplet annihilation. From this observation we estimate the lower bound of the intersystem crossing yield as 1.2%. We also calculate the intrachain annihilation constant to be (2.9+/-0.1)x 10(8) cm(3) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号