首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strength and equation of state of molybdenum triboride have been determined under nonhydrostatic compression up to 80?GPa, using an angle-dispersive radial X-ray diffraction technique in a diamond anvil cell (DAC). The RXD data yield a bulk modulus and its pressure derivative as K0?=?342(6)?GPa with K0′?=?2.11(17) at ψ?=?54.7°. Analysis of diffraction data using the strain theory indicates that the ratio of differential stress to shear modulus (t/G) ranges from 0.002 to 0.050 at pressures of 4–80?GPa. Together with theoretical results on the high pressure shear modulus, our results here show that molybdenum triboride sample under uniaxial compression can support a differential stress of ~10?GPa when it started to yield with plastic deformation at ~30?GPa. In addition, we draw a conclusion that MoB3 is not a superhard material but a hard material.  相似文献   

2.
Phase transitions in CsHSO4 at pressures up to 2.5 GPa have been studied with the help of electrical impedance measurements. The phase boundaries have been identified with the help of calculated activation energies of electrical conductivity and dielectric relaxation time. The derived temperatures of phase transition from the low conductive phase II into super ionic phase I at pressure less than 1 GPa confirm the previous results of Ponyatovski? et al. (1985) [4] and Friesel et al. (1989) [27]. The phase diagram derived in this study for pressure larger than 1 GPa differs from the data of Ponyatovski? et al. (1985) [4]. The phase transitions IV-VI and VI-I occur at higher temperatures having significantly larger Clapeyron slope. The phase VII was not identified from heating cycle and appears only under cooling between phases I and VI. The phase VIII was detected at 2.5 GPa at T<350 K and only during heating.  相似文献   

3.
 在对冲击作用下界面热传导特性进行分析的基础上,提出了一种在透明材料前加一高发射率特殊填层材料,通过其与透明材料的热平衡温度来确定透明材料的冲击温度的测量方法,并对氯化钠单晶在41 GPa压力下的冲击温度进行了测量。初步实验结果表明,用这种方法测量透明材料的冲击温度是可行的。  相似文献   

4.
由于铁电材料在科学研究领域的重要应用,功能铁电材料的设计和机理研究一直是国内外的研究热点。材料的性能离不开结构研究,为了更好的认识和理解一种典型铁电材料-硫酸氢铵的结构和相行为,研究了17GPa压强下硫酸氢铵的高压拉曼光谱。在压力作用下,绝大多数的拉曼谱线向高波数方向移动,并且有两个特征拉曼谱带的强度发生很大的变化(1 018和3 183cm~(-1)),表明硫酸盐与铵离子正四面体的电子云密度发生重构。根据频移-压强曲线关系,得出了硫酸氢铵在6和10.5GPa附近分别存在一阶相变。根据高压下S=O伸缩振动谱带的变化规律,发现了不同相区间氢键的相反作用规律。为AHSO_4系列铁电材料压力作用下结构变化规律提供一定的研究基础。  相似文献   

5.
The measurement of the density of liquid argon at a pressure of about 1000 GPa in a cylindrical setup transforming shock compression to quasi-isentropic compression gives a value of about 9 g/cm3. The experimental data are compared with calculations. The results bring out clearly that no anomaly is observed in the behavior of isentropically compressed liquid argon at pressures up to about 1000 GPa.  相似文献   

6.
The present study examined the effects of pressure (range: 1–6?GPa) on microstructure and mechanical properties of pure Zr. Pressure significantly affected refining of Zr microstructure. When 5?GPa pressure was applied, ω-phase was observed in processed specimen, and volume fraction sharply increased to 57.4% for specimen pressurized-quenched at 6?GPa. Benefitting from refinement of acicular-shaped α (α′) plates and the formation of equiaxial ω-phase, the yield strength of the sample quenched from 6?GPa reached ~616?MPa, which is almost twice as that of coarse-grained Zr.  相似文献   

7.
The superconducting transition temperature (Tc) of Ba0.62K0.38Bio3 (Tc=30 K) has been measured under high pressure up to 8 GPa. It is observed that Tc increases initially with pressure, as reported by Uwe et al., Shirber et al. and Huang et al., but decreases above 4 GPa. The Hall coefficient of Ba0.62K0.38BiO3 has been measured up to 1.2 GPa. The absolute value of the Hall coefficient decreases with pressure by 10% GPa, the value of which is almost the same as that obtained in most CuO-based high-temperature superconductors.  相似文献   

8.
Yoneda A  Kubo A 《J Phys Condens Matter》2006,18(25):S979-S994
It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ~0.07?GPa at the mean pressure of 10.5?GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (~0.07?GPa) could yield a ~0.3?GPa mean pressure error at ~10?GPa.  相似文献   

9.
Ultrafine-grained (0.2–0.3?µm) WC–Ni hardmetals with a low Ni content (3–5?wt%) were developed using new production techniques based on adding an appropriate amount of VC and Cr3C2, combined with the strong mixing of raw materials. Their uniaxial compressibility was subsequently compared with that of existing WC–Ni and WC–Co hardmetals to assess their suitability for use as anvils in various high pressure experiments, particularly those associated with neutron or magnetic studies. The ultimate compressive strength of the newly developed hardmetals was over 7.7?GPa, which was higher by 1.2?GPa than that of the existing WC–Ni hardmetal ‘MF10’. When these hardmetals were used as anvils, a pressure of approximately 16?GPa was generated using a Paris-Edinburgh-type apparatus with φ8?mm culet, thereby proving that they can allow the physical properties of various materials to be measured at higher pressures than is possible with existing hardmetals.  相似文献   

10.
Density functional theory calculations have been performed to study the structural, electronic, absorption, and thermodynamic properties of crystalline 2,4,6‐triamino‐3,5‐dinitropyridine‐1‐oxide (TANPyo) in the pressure range of 0–50 GPa. The variation trends of the lattice constants, bond lengths, bond angles, intramolecular H‐bonds, and dihedral angles under compression show that there are two structural transformations at 17 and 38 GPa, respectively. The remarkable changes in the bond lengths indicate that there are two possible initiation decomposition mechanisms of TANPyo under compression. As the pressure increases, the intramolecular H‐bond strengthens. The obvious changes of the dihedral angles show that the planar structure of the TANPyo molecule is damaged under compression. Its absorption spectra show that as the pressure increases, the absorption coefficient of the N–H stretching decreases, while that of the O–H stretching increases. TANPyo has relatively high optical activity at high pressure. An analysis of thermodynamic properties indicates that both two structural transformations are endothermic and not spontaneous at room temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-ρ关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grüneisen参数γ。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K′0S=4.20(5),其ρ0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。  相似文献   

12.
利用集成有金属薄膜电极的金刚石对顶砧,对微米氧化锌样品进行了原位高压电导率测量.结果表明,在919 GPa时样品电导率达到最小值,在919—1122 GPa时样品电导率急剧增大,说明此时样品从纤锌矿结构向岩盐矿结构转变直至完全相变,1122 GPa为相变点.通过测量不同条件下高温退火处理的样品电导率,明显看到氧空位对电导率的影响. 关键词: 高压 微米氧化锌 电导率 金刚石对顶砧  相似文献   

13.
It is shown in this Comment that the method proposed by Zhiwei et al. to extract cross sections for collisional energy transfer between molecular states mediated by argon atoms, is neither correct nor suitable, as it fails to reproduce the molecular behaviour they observe. An alternative model based on a consecutive scheme is put forward, and it is shown that a minimal assumption of one intermediate collisionally activated step is enough to satisfactorily reproduce the observations by Zhiwei et al. However, the extracted parameters are functions of the involved rate constants that are too complex to leave any hope of attaining information on the desired cross sections from them by just varying the argon buffer gas pressure, as done by Zhiwei et al. Received: 30 November 1998 / Published online: 14 July 1999  相似文献   

14.
ABSTRACT

The influences of pressure on structural, elastic, electronic and optical properties of α-RDX under pressure from 0 to 40?GPa have been investigated by performing first-principles calculations. The obtained structural parameters based on the GGA-PBE+G calculations are consistent with previous experimental values. The results of B/G, C12-C44 and Poisson's ratio show that α-RDX has changed to ductility under pressure between 0 and 5?GPa. The obvious rotation of NO2 group in the equatorial position appears, especially in the range of pressure from 10 to 15?GPa, which influences the elastic and mechanical properties of α-RDX. Moreover, we find that the electrons of α-RDX become more active under higher pressure by comparing the curves of DOS under different pressure. Furthermore, the anisotropy of optical properties under different pressures has been shown.  相似文献   

15.
采用基于密度泛函理论的广义梯度近似方法研究了稳态六方petrov原子序列结构Ge2Sb2Te5的结构、电子和光学性质。计算所得的平衡态晶格参数与实验数据和先前的理论结果吻合很好。基态的能带结构和态密度表明了稳态六方petrov原子序列结构的Ge2Sb2Te5持有金属性。从压强影响下体积的变化趋势发现稳态六方Ge2Sb2Te5在17 GPa和34 GPa 出现不稳定,暗示在此压强下的相变发生,这与2009年Krbal等人的实验结果相吻合。同时,还系统地研究了稳态六方petrov原子序列结构的Ge2Sb2Te5高压下的光学性质,得到了高压下介电函数、吸收率、光反射率、折射率、消光系数和电子能量损失谱在20 eV内的变化情况。  相似文献   

16.
Two silver samples, coarse grained (c-Ag, grain size 300±30 nm) and nanocrystalline (n-Ag, grain size 55±6 nm), are compressed in a diamond anvil cell in separate experiments. The pressure is increased in steps of ∼3 GPa and the diffraction pattern recorded at each pressure. The grain size and compressive strength are determined from the analysis of the diffraction line-widths. The grain size of c-Ag decreases rapidly from 300±30 nm at ambient pressure to 40±8 nm at 15 GPa, and then gradually to 20±3 nm at 40 GPa. After pressure release to ambient condition, the grain size is 25±4 nm. The strength at ambient pressure is 0.18±0.05 GPa and increases to 1.0±0.3 GPa at 40 GPa. The grain size of n-Ag decreases from 55±6 nm at ambient pressure to 17±4 nm at 15 GPa and to 14±3 nm at 55 GPa. After release of pressure to ambient condition, the grain size is 50±7 nm. The strength increases from 0.51±0.07 GPa at ambient pressure to 3.5±0.4 GPa at 55 GPa. The strength is found to vary as the inverse of the square-root of the grain size. The results of the present measurements agree well with the grain-size dependence of strength derived from the hardness versus grain size data at ambient pressure available in the literature.  相似文献   

17.
 利用最新的X光衍射实验数据和Ar原子的弹性散射实验结果,得到了Ar原子间的相互作用和350 GPa下的固态氩的状态方程。这个状态方程可以作为超高压力下的压标。在150 GPa以上的压标,是目前高压研究中急需的。固态氩既可作为准静水压传压介质,又可作为高压X光衍射中的压标使用。本文计算了固态氩的Grüneisen参数、Debye特征参数、定容比热和等温体模量随压力的变化,压力范围为0~150 GPa。  相似文献   

18.
The structural parameters, mechanical, electronic and thermodynamic properties of TE-C36 under high pressure were calculated via the density functional theory in combination with the quasi-harmonic Debye model. The results show that the pressure has significant effects on the equilibrium structure parameters, mechanical, electronic and thermodynamic properties of TE-C36. The obtained ground state structural parameters are in good agreement with previous theoretical results. The mechanically and dynamically stable under pressure were confirmed by the calculated elastic constants and phonon dispersion spectra. The elastic constants, elastic modulus, B/G ratio, Poisson’s ratio and Vicker’s hardness were determined in the pressure range of 0–100?GPa. The elastic anisotropy of TE-C36 under pressure are also determined in detail. The electronic structure calculations reveal that TE-C36 remains a direct band gap semiconductor when the pressure changes from 0 to 100?GPa, and the band gap decreases with increasing pressure. Furthermore, the pressure and temperature dependence of thermal expansion coefficient, heat capacity and Debye temperature are predicted in a wide pressure (0–90?GPa) and temperature (0–2500?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of TE-C36.  相似文献   

19.
The structure of GeO(2) glass was investigated at pressures up to 17.5(5)?GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ??5?GPa, is associated with a reorganization of GeO(4) units. The second, extending over the range from ??5 to 10?GPa, corresponds to a regime where GeO(4) units are replaced predominantly by GeO(5) units. In the third, as the pressure increases beyond ~10?GPa, appreciable concentrations of GeO(6) units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30?GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO(2) occur at similar dimensionless number densities to those found for SiO(2), indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24?GPa where SiO(4) units are replaced predominantly by SiO(5) units, and a regime beyond ~24?GPa where appreciable concentrations of SiO(6) units begin to form.  相似文献   

20.
The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm3 and 1.55(2) g/cm3. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formed in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号