首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and simple method for the synthesis of symmetric macromolecules by photoinduced switching from radical polymerization to a radical coupling reaction is reported. Structurally well-defined telechelic polyisoprenes and ABA-triblock copolymers were prepared by successive organotellurium-mediated living radical polymerization (TERP) under thermal conditions, followed by a polymer-end radical coupling reaction under photoirradiation.  相似文献   

2.
Iniferters are initiators that induce radical polymerization that proceeds via initiation, propagation, primary radical termination, and transfer to initiator. Because bimolecular termination and other transfer reactions are negligible, these polymerizations are performed by the insertion of the monomer molecules into the iniferter bond, leading to polymers with two iniferter fragments at the chain ends. The use of well‐designed iniferters would give polymers or oligomers bearing controlled end groups. If the end groups of the polymers obtained by a suitable iniferter serve further as a polymeric iniferter, these polymerizations proceed by a living radical polymerization mechanism in a homogeneous system. In these cases, the iniferters (C S bond) are considered a dormant species of the initiating and propagating radicals. In this article, I describe the history, ideas, and some characteristics of iniferters and living radical polymerization with some iniferters that contain dithiocarbamate groups as photoiniferters and several compounds as thermal iniferters. From the viewpoint of controlled polymer synthesis, iniferters can be classified into several types: thermal or photoiniferters; monomeric, polymeric, or gel iniferters; monofunctional, difunctional, trifunctional, or polyfunctional iniferters; monomer or macromonomer iniferters; and so forth. These lead to the synthesis of various monofunctional, telechelic, block, graft, star, and crosslinked polymers. The relations between this work and other recent studies are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2121–2136, 2000  相似文献   

3.
This work studies the kinetics of living radical polymerization by means of both the nonsteady state approach and the quasi-stationary state method. Expressions for the numberand weight-average degress of polymerization and the polydispersity index were derived. Numerical results show that the concentration of residual initiator seriously influences the polydispersity index of the resulting polymer. The calculated outcomes of the non-steady state approach are evidently different from those of the quasi-stationary state method when the magnitude of the rate constant of termination is comparable with that of the propagation rate constant, and the difference becomes negligible if the rate constant of the termination (kt) is much larger than that of propagation (kp). The polydispersity index of the resulting polymer increases with decreasing ratios of kt to kp or MO to IO (initial concentrations of monomer and initiator).  相似文献   

4.
5.
6.
Control of radical polymerization has been one of the most challenging frontiers in polymerization chemistry. This review presents the discovery of metal-catalyzed living radical polymerization and recent developments in the evolution of catalysts in terms of versatility and activity, scope of monomers, controlled polymerization in water, catalyst removal, and precision synthesis of well-controlled polymers such as random, block, end-functionalized, and star polymers.  相似文献   

7.
The introduction of the aqueous phase into a living radical polymerization increases the complexity of the kinetics by creating the possibility of species partitioning between the aqueous and organic phases, and introducing aqueous phase reactions which could play a significant role particularly in chain initiation and/or particle nucleation. We have conducted a series of styrene miniemulsion polymerizations in which the solubility of initiator and nitroxide have been systematically varied. Experiments were run using either water-soluble (potassium persulphate) or oil-soluble (benzoyl peroxide) initiator, and either TEMPO or 4-hydroxy-TEMPO. These two nitroxides vary considerably in their water solubility. The effects of initiator and nitroxide solubility in water on conversion-time behaviour, molecular weight and initiator efficiency are presented.  相似文献   

8.
Microgels which are soluble crosslinked polymer networks have been prepared using the nitroxide living free radical polymerization methodology. When heated in the presence of tert-butylstyrene and 1,4-divinylbenzene, the alkoxyamine 1 derived from 2,2′-azoisobutyronitrile (AIBN) afforded a high molecular weight soluble polymer which was shown by size exclusion chromatography in conjunction with an on-line multi angle laser light scattering (MALLS) detector to have microgel properties.  相似文献   

9.
Primary- and secondary-alkyl aryl tellurides, prepared by arenetellurolate ring-opening of epoxides/ O-allylation, were found to undergo rapid (3-10 min) group-transfer cyclization to afford tetrahydrofuran derivatives in 60-74% yield when heated in a microwave cavity at 250 degrees C in ethylene glycol or at 180 degrees C in water. To go to completion, similar transformations had previously required extended photolysis in refluxing benzene containing a substantial amount of hexabutylditin. The only drawback of the microwave-assisted process was the loss in diastereoselectivity which is a consequence of the higher reaction temperature. Substitution in the Te-aryl moiety of the secondary-alkyl aryl tellurides (4-OMe, 4-H, 4-CF(3)) did not affect the outcome of the group-transfer reaction in ethylene glycol. However, at lower temperature, using water as a solvent, the CF(3) derivative failed to react. The microwave-assisted group-transfer cyclization was extended to benzylic but not to primary- and secondary-alkyl phenyl selenides.  相似文献   

10.
A new versatile method for conducting living radical polymerization has been developed in which organostibines induce consecutive group-transfer radical reactions with alkenes. The method has been successfully applied, for the first time, to the controlled polymerization of both conjugated and unconjugated vinyl monomers, and the desired polymers with predetermined molecular weight and low polydispersity index were obtained in excellent yields. This characteristic feature of this method is exemplified in the first synthesis of block copolymers composed of conjugated and unconjugated monomers, which would be of great importance as functional smart organic nanomaterials.  相似文献   

11.
12.
The nitroxide-mediated photo-controlled/living radical polymerization of ethyl acrylate was attained using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. The photopolymerization was performed in acetonitrile at room temperature by irradiation with a high-pressure mercury lamp. The molecular weight distribution of the resulting polymer decreased as the monomer concentration decreased. It was confirmed that the polymerization was controlled on the basis of the linear correlations for the first-order time-conversion plots and the plots of the molecular weight vs. the reciprocal of the initial concentration of the initiator, although the conversion–molecular weight plots did not show a completely linear correlation. The block copolymerization with methyl methacrylate accompanied by no deactivation of the growing polymer chain end supported the livingness of the polymerization.  相似文献   

13.
The stable radicals derived from different compounds were detected in process of styrene autopolymerization. The nitroxide radicals are produced from nitrosocompound, hindered hydroxylamine, nitrophenols and nitroanisoles. The phenoxyl radicals are formed from quinine methides, and naphtoxyl radicals are generated from 2-nitro-1-naphtol. The radicals are identified, the kinetics of their formation and follow-up evolution are studied. These radicals can participate in process of living radical polymerization as the mediators and can effect significantly on kinetics of polymerization and structure of the resulting polymer.  相似文献   

14.
The use of water as a solvent for copper mediated living radical polymerization has been further investigated. Optimal conditions for effective living radical polymerization using catalyst complexes based on CuBr and N-(n-alkyl)-2-pyridylmethanimine ligands were found, leading to well defined polymer structures. The effect of water on the rate of polymerization was studied, and it was found that competitive complexation of ligand and water occurs at copper in addition to an enhanced polymerization rate on increasing the polarity of the medium.  相似文献   

15.
Four types of temperature-sensitive hairy particles were prepared by living radical graft polymerization using a photoiniferter. The hairs were poly(N-isopropylacrylamide) (N), poly(N-isopropylacrylamide)ran-poly(acrylic acid) (NA), and diblock copolymers composed of N and NA. The block copolymer was attached to the particle in different modes, that is, one has a N-block inner and a NA-block outer but the other has the inverse arrangement. The acrylic acid content in NA was adjusted to be only 1%, but NA had a higher transition temperature by 5 degrees C than N in a neutral aqueous solution. The sequence of blocks attached onto the particle was the key factor to control the temperature responsiveness of the particle. The hairy particles exhibited a two-step transition with increasing temperature under certain conditions. The hairy particle also responded to the pH and ionic strength. Some unique behaviors of the hairy particles were studied in detail in terms of electrophoretic mobility and adsorption of dye molecules as well as swelling/deswelling.  相似文献   

16.
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong π–π and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting‐from and grafting‐to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Radical polymerization of p-bromostyrene was investigated with benzoyl peroxide (BPO) as an initiator in the presence of 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO). The polymerization was performed in bulk for 3.5 h at 95°C and then continued for another 48 h at 125°C to afford the corresponding polybromostyrene with a narrow molecular weight distribution in high yield. 1H NMR study revealed that the polymer obtained had BPO and MTEMPO moieties at its head and tail, respectively. It was confirmed that the polymerization proceeded in accordance with living mechanism, because the molecular weight linearly increased with an increase of the conversion, and it was directly proportional to the reciprocal of the initial concentration of BPO. Furthermore, the polystyrene obtained in the present study could quantitatively act as the initiator for the polymerization of p-bromostyrene in the living radical manner to afford the corresponding block copolymer, and vice versa. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A process for RAFT-controlled radical polymerization in emulsion [36] has been applied to the polymerizations of isoprene and of butadiene in emulsion systems, with the goal of producing latex particles containing block copolymers of acrylic acid (stabilizer and starting polymer), styrene (second polymer) and isoprene or butadiene (third polymer). The microstructure of the polymer chains was examined using dual-detection size-exclusion chromatography, and the nanostructure of the materials was investigated by differential scanning calorimetry and solid-state nuclear magnetic resonance. Reactions were always slow (although faster than the corresponding processes in solution), and exhibited limited reinitiation by isoprene when in emulsion. The materials containing isoprene exhibit a nanostructure with a phase separation into high-Tg polystyrene-rich domains and low-Tg polyisoprene-rich domains, revealed by DSC and NMR. This has the potential to lead to barrier materials with novel physical properties.  相似文献   

19.
On-off: A living radical polymerization procedure, which utilizes ppm levels of an iridium-based photoredox catalyst, affords control over chain growth through mediation by visible light (see scheme; P(n) =polymer chain, X=halogen, M=monomer). This process can be activated and deactivated by light, enables control over the molecular weight and molecular weight distributions, and tolerates different functional groups.  相似文献   

20.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号