共查询到20条相似文献,搜索用时 15 毫秒
1.
The periodically forced spatially extended Brusselator is investigated in the chaotic regime. We explore resonant or non-resonant patterns generated under various forcing frequencies and forcing amplitudes. Resonant spatially uniform oscillation and irregular structures are found. Furthermore two types of regular spatial patterns are generated under appropriate parameters. Our results of numerical simulations demonstrate that periodic force can give rise to resonant patterns in forced systems of spatiotemporal chaos similar to the situation of forced systems of regular oscillations. 相似文献
2.
The mechanism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes a synchronized drift along a straight line, and a 3D scroll ring with its filament closed into a circle can be reoriented only if the direction of wave number of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scroll ring, the approximate formulas are given to exhibit qualitative agreements with the observed results. 相似文献
3.
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinitedimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach. 相似文献
4.
We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average finks and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns. 相似文献
5.
To reveal the dynamics of neuronal networks with pacemakers, the firing patterns and their transitions are investigated in a ring HR neuronal network with gap junctions under the control of a pacemaker. Compared with the situation without pacemaker, the neurons in the network can exhibit wrious firing patterns as the externed current is applied or the coupling strength of pacemaker varies. The results are beneficial for understanding the complex cooperative behaviour of large neural assemblies with pacemaker control. 相似文献
6.
This Letter investigates the problem of synchronization in complex dynamical networks with time-varying delays. A periodically intermittent control scheme is proposed to achieve global exponential synchronization for a general complex network with both time-varying delays dynamical nodes and time-varying delays coupling. It is shown that the sates of the general complex network with both time-varying delays dynamical nodes and time-varying delays coupling can globally exponentially synchronize with a desired orbit under the designed intermittent controllers. Moreover, a typical network consisting of the time-delayed Chua oscillator with nearest-neighbor unidirectional time-varying delays coupling is given as an example to verify the effectiveness of the proposed control methodology. 相似文献
7.
The transition from stationary to oscillatory states in dynamical systems under phase space compression is investigated. By considering the model for the spatially one-dimensional complex Ginzburg-Landau equation, we find that defect turbulence can be substituted with stationary and oscillatory signals by applying system perturbation and confining variable into various ranges. The transition procedure described by the oscillatory frequency is studied via numerical simulations in detail. 相似文献
8.
It is well known that one of key features of spiral waves in complex-oscillatory media is the appearance of synchronization defect lines, across which the phase of the oscillation changes by multiplies of 2π. In this Letter, we report the appearance of synchronization defect lines in target waves in complex-oscillatory media by studying a model of two-dimensional Rössler reaction-diffusion system subject to an appropriate periodic force in a small region of the center of domain. The geometric structure and stability of the defect lines are studied. 相似文献
9.
We investigate different types of synchronization between two unidirectionally nonlinearly coupled identical delay- differential systems related to optical bistable or hybrid optical bistable devices. This system can represent some kinds of delay-differential models, i.e. Ikeda model, Vall~e model, sine-square model, Mackey Glass model, and so on. We find existence and sufficient stability conditions by theoretical analysis and test the correctness by" numerical simulations. Lag, complete and anticipating synchronization are observed, respectively. It is found that the time-delay system can be divided into two parts~ one is the instant term and the other is the delay term. Synchronization between two identical chaotic systems can be derived by adding a coupled term to the delay term in the driven system. 相似文献
10.
Spiral dynamics controlled by a weakly localized pacing around the spiral tip is investigated. Numerical simulations show two distinct characteristics when the pacing is applied with the weak amplitude for suitable frequencies: for a rigidly .rotating spiral, a transition from rigid rotation to meandering motion is observed, and for unstable spiral waves, spiral breakup can be prevented. Successfully preventing spiral breakup is relevant to the modulation of the tip trajectory induced by a localized pacing. 相似文献
11.
We numerically investigate the boundary-induced spiral wave drift in the complex Ginzburg–Landau equation. We find some novel phenomena for the spiral drifting dynamics such as the chaotic behaviors, the transient chaos and asymmetrical attractors. 相似文献
12.
The phenomenon of wave grouping, in which the dense waves and the sparse waves can form groups in front of the spiral tip when the spiral wave is meandering, has been reported in a chemical reaction system recently. We present a method to realize the phenomenon of wave grouping by applying an external field to the system. The numerical simulations are carried out on the basis of the FitzHugh-Nagumo equations. 相似文献
13.
Using a kinematic approach, we propose a model of arc-like wave segments in which the free ends are stabilized by using a feedback algorithm. The model can demonstrate the experimental results and numerical computations of a reaction-diffusion system. This model also reveals some aspects of spiral wave dynamics with the free ends including not only the stabilization of wave segments using feedback, but also a critical behavior with respect to the initial wave size in media with fixed excitability. 相似文献
14.
We study dynamics of spiral waves under a uniform periodic temporal forcing in an excitable medium. With a specific combination of frequency and amplitude of the external periodic forcing, a resonance drift of a spiral wave occurs along a straight line, and it is accompanied by a complicated ‘flower-like' motion on each side of this bifurcate boundary line. It is confirmed that the straight-line drift frequency of spiral waves is not locked to the nature rotation frequency as the forcing amplitude expends are further verified numerically for a simplified kinematical the range of the spiral wave frequency. These results model. 相似文献
15.
A Novel Adaptive Observer-Based Control Scheme for Synchronization and Suppression of a Class of Uncertain Chaotic Systems 下载免费PDF全文
A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme. 相似文献
16.
Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems 下载免费PDF全文
We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system. 相似文献
17.
18.
Synchronization Control of Two Different Chaotic Systems with Known and Unknown Parameters 下载免费PDF全文
Chaos synchronization of two different chaotic systems with known and unknown parameters is studied. Based on the Lyapunov stability theory, two different chaotic systems with known parameters realize global synchronization via the successfully designed nonlinear controller. By employing an adaptive synchronization scheme, the synchronization of two different chaotic systems with unknown parameters is achieved. Numerical simulations validate the effectiveness of the theoretical analysis. 相似文献
19.
The Letter describes different mechanisms for the formation and destruction of tori that are formed as layered structures of several sets of interlacing manifolds, each with their associated stable and unstable resonance modes. We first illustrate how a three layered torus can arise in a system of two coupled logistic maps through period-doubling or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We hereafter present two different scenarios by which a multilayered torus can be destructed. One scenario involves a cascade of period-doubling bifurcations of both the stable and the saddle cycles, and the second scenario describes a transition in which homoclinic bifurcations destroy first the two outer layers and thereafter also the inner layer of a three-layered torus. It is suggested that the formation of multilayered tori is a generic phenomenon in non-invertible maps. 相似文献
20.
Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lü's system as the nodes of the networks. 相似文献