首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new cobalt(II) binuclear complexes have been prepared and characterized, namely [Co2(TCPHTA)(L)4](ClO4)2 [L=1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline(NO2-phen) and 2, 2-bipyridyl (bipy), respectively], where TCPHTA is the tetrachlorophthalate dianion. Based on i.r. spectra, elemental analyses and conductivity measurements, tetrachlorophthalato-bridged structures consisting of two cobalt(II) ions in which each cobalt(II) ion has a distorted octahedral environment are proposed for these complexes. The temperature dependence of the magnetic susceptibility for [Co2(TCPHTA)(L)4](ClO4)2·nH2O (L=phen, NO2-phen and bipy) has been measured over the 77–300 K range and the observed data successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2), giving the exchange integral J=–2.92, –3.45, –4.03 cm–1, respectively. This result indicates the presence of a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

2.
廖代正  林兵  王耕霖 《化学学报》1992,50(3):269-273
合成和表征了两种新的异双核配合物[Cu(oxap)Mn(L)~2](ClO~4)~2, oxap表示N,N'-双(2-氨基丙基)草酰胺根阴离子, L表示1,10-邻菲咯啉(phen)和5-硝基-1,10-邻菲咯啉(NO~2-phen)。测定了配合物的变温磁化率(4.2-300K), 并用最小二乘法和从自旋Hamiltonian算符, ^^H=-2J^^S~1.^^S~2-D^^S~Z~1导出的磁方程拟合。求得交换积分为J=-74.72cm^-^1(phen)和J=-76.39cm^-^1(No~2-phen), 表明两个Cu(II)-Mn(II)双核配合物中有中等强度的反铁磁超交换作用。  相似文献   

3.
Absorption Mössbauer spectra of high-spin57Fe(acac)3 incorporated in diamagnetic Co(acac)3 and in paramagnetic Mn(acac)3 and of the γ-ray irradiated (57Fe, Co) (acac)3 and (57Fe, Mn) (acac)3 were compared with emission spectra of57Co-labelled Co(acac)3. Magnetic hfs is found in the spectra of (57Fe, Co) (acac)3 at 78 to 195 K, whereas such hfs is observed neither for the spectrum of57Co-labelled Co(acac)3 nor for that of γ-ray irradiated (57Fe, Co) (acac)3). The absence of magnetic hfs in the spectrum of diamagnetic57Co-labelled cobalt(III) compounds was ascribed to the spin-spin interaction due to the radicals produced in the vicinity of the decayed atom.  相似文献   

4.
Six new binuclear nickel (II) complexes have been synth-esized and characterized, namely: [Ni2(4X-TP-HA)(L)4](ClO4)2 [L = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO2-phen) or 2,2-bipyridyl (bipy)], where 4X-TPHA is the tetrabromoterephthalate dianion (X = Br) or the tetraiodoterephthalate dianion (X = I). Based on i.r. spectra, elemental analyses and conductivity measurements, these complexes are proposed to have terephthalato-bridged structures containing two NiII ions, each in a distorted octahedral environment. The temperature dependences of the magnetic susceptibility for [Ni2(4Br-TPHA)(phen)4]- (ClO4)2·H2O (1) and [Ni2(4I-TPHA)(phen)4]-(ClO4)2·- 2H2O (4) were measured over the 4–300K range and the observed data indicate weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

5.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

6.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

7.
Sun QF  Wong KM  Liu LX  Huang HP  Yu SY  Yam VW  Li YZ  Pan YJ  Yu KC 《Inorganic chemistry》2008,47(6):2142-2154
By employing functional diimine ligands coordinated dipalladium(II,II) or diplatinum(II,II) clips as corners and the coplanar 4,4'-bipyrazolate dianion (L(2-)) ligand as linker, a series of bipyrazolate-bridged metallo-macrocycles, namely, [M8L4](NO3)8 (M = Pd(dmbpy), 1; Pd(bpy), 2; Pt(bpy), 3a; Pd(phen), 4; Pt(phen), 5; Pd(15-crown-5-phen), 6; Pd(18-crown-6-phen), 8; Pd(benzo-24-crown-8-phen), 10a; Pt(15-crown-5-phen), 7a, Pt(18-crown-6-phen), 9a; Pt(benzo-24-crown-8-phen), 11a) and [M6L3](NO3)6 (M = Pt(bpy), 3b; Pt(15-crown-5-phen), 7b; Pt(18-crown-6-phen), 9b; Pd(benzo-24-crown-8-phen), 10b; Pt(benzo-24-crown-8-phen), 11b), have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of the 1H-bipyrazolyl ligands in aqueous solution. All these compounds have a crown-shaped cavity that can serve as host to solvent molecules and anions. The structures are characterized by elemental analysis, (1)H and (13)C NMR, ESI-MS, and in the cases of 1a (the BF4(-) salt of 1), 2a (the BF4(-) salt of 2), and 3b by single-crystal X-ray diffraction analysis. Photophysical properties for complexes 1 and 2 are discussed.  相似文献   

8.
Lo KK  Hui WK 《Inorganic chemistry》2005,44(6):1992-2002
This paper describes the design of a series of luminescent rhenium(I) polypyridine biotin complexes containing different spacer-arms, [Re(N-N)(CO)3 (py-4-CH2-NH-biotin)](PF6) (py-4-CH2-NH-biotin = 4-(biotinamidomethyl)pyridine; N-N = 1,10-phenanthroline, phen (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (2a), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, Me2-Ph2-phen (3a), dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (4a)), [Re(N-N)(CO)3 (py-3-CO-NH-en-NH-biotin)](PF6) (py-3-CO-NH-en-NH-biotin = 3-(N-((2-biotinamido)ethyl)amido)pyridine; N-N = phen (1b), Me4-phen (2b), Me2-Ph2-phen (3b), dpq (4b)), and [Re(N-N)(CO)3 (py-4-CH2-NH-cap-NH-biotin)](PF6) (py-4-CH2-NH-cap-NH-biotin = 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine; N-N = phen (1c), Me4-phen (2c), Me2-Ph(2)-phen (3c), dpq (4c)). Upon irradiation, all of the rhenium(I)-biotin complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi* (diimine)) emission in fluid solutions at 298 K. The interactions of these biotin-containing complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. On the basis of the results of these experiments, homogeneous assays for biotin and avidin have been designed.  相似文献   

9.
The reaction of btzmp (1,2-bis(tetrazol-1-yl)-2-methylpropane) with Fe(ClO4)2 generates a 1D polymeric species, [Fe(mu-btzmp)2(btzmp)2](ClO4)2, showing a steep spin transition (T(1/2) / =136 K and T(1/2) / =133 K) with a 3 K thermal hysteresis. The crystal structure at 100 and 200 K reveals that, in contrast to other bistetrazole based spin-transition systems such as [Fe(endi)3](BF4)2 and [Fe(btzp)3](ClO4)2, the present compound has only two ligands bridging the metallic centres, while the other two coordination positions are occupied by two mono-coordinated (non-bridging) btzmp ligands. This peculiarity confers an unprecedented crystal packing in the series of 1D bistetrazole based polymers. The change in spin state is accompanied by an order/disorder transition of the ClO4* counterion. A careful examination of the structural changes occurring upon the spin transition indicates that this order/disorder is most likely affected by the modification of the [tetrazole-centroid]-ND-Fe angle (which is typical of bistetrazole spin-transition materials). Apart from X-ray analysis, also magnetic susceptibility, M?ssbauer and UV-vis spectroscopies have been used to characterise the HS and the LS states of [Fe(mu-btzmp)2(btzmp)2](ClO4)2.  相似文献   

10.
Transition-metal aqua complex salts [M(H2O)6]X2 (where M is Mn(II), Co(II), Ni(II), Zn(II), or Cd(II) and X is NO3-, Cl-, or ClO4-) can be dissolved in triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers (Pluronics, such as P65) to form homogeneous liquid crystalline (LC) mesophases. However, the [Co(H2O)6]X2:P65 LC mesophases slowly undergo phase separation into a disordered ion-free phase and an ordered ion-rich LC mesophase. The phase separation also takes place in the two-salt systems [Co(H2O)6](NO3):[Co(H2O)6](ClO4)2:P65 in which the ion-free disordered domains separate out from the initially ordered homogeneous mesophase. The phase separation results in a physical mixture of a hexagonal nitrate-rich and cubic perchlorate-rich LC and disordered ion-free domains in the mixed salt systems. The driving force in the phase separation in the [Co(H2O)6]X2:P65 system is Co(II)-catalyzed aerobic oxidation of P65 into ester and/or other oxidation products. The separation of ions in the [Co(H2O)6](NO3)2:[Co(H2O)6](ClO4)2:P65 system is related to the mesostructures of the two-salt systems that are different, hexagonal in the [Co(H2O)6](NO3)2:P65 system and cubic in the [Co(H2O)6](ClO4)2:P65 system. There is no visible phase separation in the other transition-metal salt:P65 systems. The phase separation in the [Co(H2O)6]X2:P65 systems can also be eliminated by keeping the mesophase under a N2 atmosphere.  相似文献   

11.
57Fe Mössbauer emission spectra of the 57Co labeled complex compound [57Co(2-CH3-phen)3] (ClO4)2·2H2O have been measured as a function of temperature between 293 and 4.6 K. The spectra exclusively show high-spin iron(II) resonances beside a small fraction of an high-spin iron(II) species, whereas the corresponding iron(II) compound is known to exhibit thermally induced high-spin 5T2g(Oh) ? low spin 1A1g(Oh) transition. The electronic nature of the anomalous spin state has been found to be 5A1(D3) by a theoretical treatment of the temperature dependence of the quadrupole splitting. The results are in good agreement with those obtained from Mössbauer absorption measurements on [57Fe0.01Co0.99(2-CH3-(phen)3] (ClO4)2·2H2O.  相似文献   

12.
合成了 7种草酸根桥联的 Cu 2 Fe 、Ni 2 Fe 、Co 2 Fe 异三核配合物 [M2 Fe(C2 O4) 3Lx](Cl O4) ,(M=Cu,L=bpy,Me2 phen,NO2 phen,x=2 ;M=Ni,Co,L=bpy,Me2 phen,x=4 ) .经元素分析、摩尔电导和磁性的测定以及红外光谱和电子光谱等方法对这些配合物进行了表征 ,确定了配合物的组成和结构 .初步生物活性试验表明形成异三核配合物后其杀菌活性明显提高  相似文献   

13.
本文合成了五种以氯冉酸二价阴离子为桥联配体的Cu(II)单核([CuLCA].H~2O)和双核([Cu~2L~2CA](ClO~4)~2配合物:[Ca(phen)CA].H~2O(1),[Cu~2(phen)~2CA](ClO~4)~2(2),[Cu(NO~2-phen)CA].H~2O(3),[Cu~2(NO~2-phen)~2CA](ClO~4)~2(4)和[Cu~2(bpy)~2CA](ClO~4)~2(5)。经元素分析、红外、固体紫外、顺磁共振、磁化率及变温磁化率的测定对上述各配合物进行了表征。配合物1,3可能是通过水分子中的氢键将两个[CuLCA]单元联接而缔合的假双聚体。配合物2,4,5则由阳[Cu~2L~2CA]^2^+阳离子和弱配位的ClO~4^-阴离子所组成。双核配合物中Cu(II)离子的几何构型可能为畸变的四方锥。所有五种配合物均难溶于水及常见有机溶剂。上述配合物的室温ESR谱呈现ΔM~s=2的从单重态到三重态的半场跃迁。配合物2,5的变温磁化率(4-300K)已测得,利用Heisenberg模型确定交换参数J值为-29.2和-25.7cm^-^1。表明在此类桥联配合物中,两核间存在着反铁磁性交换耦合作用。  相似文献   

14.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

15.
The complexes [Cu(phen)(3)](ClO(4))(2) 1, [Cu(5,6-dmp)(3)](ClO(4))(2) 2, [Cu(dpq)(3)](ClO(4))(2) 3, [Zn(phen)(3)](ClO(4))(2) 4, [Zn(5,6-dmp)(3)](ClO(4))(2) 5 and [Zn(dpq)(3)](ClO(4))(2) 6, where phen = 1,10-phenanthroline, 5,6-dmp = 5,6-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-d:2',3'-f]quinoxaline, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Cu(5,6-dmp)(3)](ClO(4))(2) and rac-[Zn(5,6-dmp)(3)](ClO(4))(2) have been determined. While 2 possesses a regular elongated octahedral coordination geometry (REO), 5 possesses a distorted octahedral geometry. Absorption spectral titrations of the Cu(II) complexes with CT DNA reveal that the red-shift (12 nm) and DNA binding affinity of 3 (K(b), 7.5 x 10(4) M(-1)) are higher than those of 1 (red-shift, 6 nm; K(b), 9.6 x 10(3) M(-1)) indicating that the partial insertion of the extended phen ring of dpq ligand in between the DNA base pairs is deeper than that of phen ring. Also, 2 with a fluxional Cu(II) geometry interacts with DNA (K(b), 3.8 x 10(4) M(-1)) more strongly than 1 suggesting that the hydrophobic forces of interaction of 5,6 methyl groups on the phen ring is more pronounced than the partial intercalation of phen ring in the latter with a static geometry. The DNA binding affinity of 1 is lower than that of its Zn(ii) analogue 4, and, interestingly, the DNA binding affinity 2 of with a fluxional geometry is higher than that of its Zn(II) analogue 5 with a spherical geometry. It is remarkable that upon binding to DNA 3 shows an increase in viscosity higher than that the intercalator EthBr does, which is consistent with the above DNA binding affinities. The CD spectra show only one induced CD band on the characteristic positive band of CT DNA upon interaction with the phen (1,4) and dpq (3,6) complexes. In contrast, the 5,6-dmp complexes 2 and 5 bound to CT DNA show exciton-coupled biphasic CD signals with 2 showing CD signals more intense than 5. The Delta-enantiomer of rac-[Cu(5,6-dmp)(3)](2+) 2 binds specifically to the right-handed B-form of CT DNA at lower ionic strength (0.05 M NaCl) while the Lambda-enantiomer binds specifically to the left-handed Z-form of CT DNA generated by treating the B-form with 5 M NaCl. The complex 2 is stabilized in the higher oxidation state of Cu(II) more than its phen analogue 1 upon binding to DNA suggesting the involvement of electrostatic forces in DNA interaction of the former. In contrast, 3 bound to DNA is stabilized as Cu(I) rather than the Cu(II) oxidation state due to partial intercalative interaction of the dpq ligand. The efficiencies of the complexes to oxidatively cleave pUC19 DNA vary in the order, 3> 1 > 2 with 3 effecting 100% cleavage even at 10 microM complex concentration. However, interestingly, this order is reversed when the DNA cleavage is performed using H(2)O(2) as an activator and the highest cleavage efficiency of 2 is ascribed to its electrostatic interaction with the exterior phosphates of DNA.  相似文献   

16.
The complexes [Co(diimine)(3)](ClO(4))(2)1-3 and [Ni(diimine)(3)](ClO(4))(2)4-6, where diimine = 1,10-phenanthroline (phen) (1,4), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (2,5) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3,6), have been isolated, characterized and their interaction with CT DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Co(5,6-dmp)(3)](ClO(4))(2)2 and rac-[Ni(5,6-dmp)(3)](ClO(4))(2)5 have been determined and the isostructural and also isomorphous complex cations possess distorted octahedral coordination geometries. The absorption spectral titrations of the complexes with DNA reveal that the CT DNA binding affinity (K(b)) of the complexes varies as 3>2>1; 6>5>4. The Ni(II) complexes display DNA binding stronger than the corresponding Co(II) analogues, which is expected of their bigger sizes. The higher DNA binding affinity of 3 and 6 is due to the involvement in partial insertion of the extended phen ring in between the DNA base pairs. In contrast, 2 and 5 interact with DNA in the major groove through hydrophobic forces involving the methyl groups on the 5,6 positions of phen ring. An enhancement in relative viscosities of DNA upon binding to 1-6 is consistent with the DNA binding affinities. The CD spectral studies show only an induced CD band on the characteristic positive band of CT DNA for both the phen (1,4) complexes. In contrast, the 5,6-dmp (2,5) and dpq (3,6) complexes bound to CT DNA exhibit biphasic CD signals in place of the positive CD band and the negative helicity band disappears. This reveals that the complexes bind to DNA enantiopreferentially and effect changes in secondary structure of DNA. The CV and DPV responses indicate that the DNA-bound dpq complexes are stabilized in the lower oxidation state of Co(II) more than in the Co(III) oxidation state. The prominent DNA cleavage abilities of 1-3 observed in the presence of H(2)O(2) (200 μM) follows the order 2>1>3 with efficiencies of more than 90% even at 10 μM complex concentration. Interestingly, Ni(II) complexes 4-6 exhibit higher cytotoxicity (IC(50): 1, 28.0; 2, 15.0; 3, 20.0; 4, 8.0; 5, 2.0; 6, 2.0 μM at 48 h; IC(50): 1, 30.0; 2, 20.0; 3, 25.0; 4, 10.0; 5, 3.0; 6, 3.0 μM at 24 h) against human breast cancer (MCF 7) cell lines than the Co(II) complexes 1-3 as well as cisplatin in spite of their inability to cleave DNA. Also, the 5,6-dmp complex 5 shows cytotoxicity higher than the dpq complex 6 at 24 h incubation time and both 5 and 6 display apoptotic and necrotic modes of cell death.  相似文献   

17.
The valence states of the nucleogenic (57)Fe arising from the nuclear disintegration of radioactive (57)Co by electron capture decay, (57)Co(EC)(57)Fe, have been studied by M?ssbauer emission spectroscopy (MES) in the (57)Co-labeled systems: [(57)Co/Co(terpy)(2)]Cl(2).5H(2)O (1), [(57)Co/Co(terpy)(2)](ClO(4))(2).(1)/(2)H(2)O (2), and [(57)Co/Mn(terpy)(2)](ClO(4))(2). (1)/(2)H(2)O (3) (terpy = 2,2':6',2' '-terpyridine). The compounds 1, 2, and 3 were labeled with ca. 1 mCi of (57)Co and were used as the M?ssbauer sources at variable temperatures between 300 K and ca. 4 K. [Fe(terpy)(2)]X(2) is a diamagnetic low-spin (LS) complex, independent of the nature of the anion X, while [Co(terpy)(2)]X(2) complexes show gradual spin transition as the temperature is varied. The Co(II) ion in 1 "feels" a somewhat stronger ligand field than that in 2; as a result, 83% of 1 stays in the LS state at 321 K, while in 2 the high-spin (HS) state dominates at 320 K and converts gradually to the LS state with a transition temperature of T(1/2) approximately 180 K. Variable-temperature M?ssbauer emission spectra for 1, 2, and 3 showed only LS-(57)Fe(II) species at 295 K. On lowering the temperature, metastable HS Fe(II) species generated by the (57)Co(EC)(57)Fe process start to grow at ca. 100 K in 1, at ca. 200 K in 2, and at ca. 250 K in 3, reaching maximum values of 0.3 at 20 K in 1, 0.8 at 50 K in 2, and 0.86 at 100 K in 3, respectively. The lifetime of the metastable HS states correlates with the local ligand field strength, and this is in line with the "inverse energy gap law" already successfully applied in LIESST relaxation studies.  相似文献   

18.
The employment of a strategy based on nucleophilic substitution, rather than Schiff base condensation, for the preparation of 1,2,4-triazole-based ligands has been investigated and has led to the synthesis of two new ligands, 4-amino-3,5-bis{[N-(2-pyridylmethyl)-N-(4-toluenesulfonyl)amino]methyl}-4H-1,2,4-triazole (TsPMAT, 14) and 4-amino-3,5-bis{[(2-pyridylmethyl)amino]methyl}-4H-1,2,4-triazole (PMAT, 15). These are the first examples of bis(terdentate) ligands incorporating the 1,2,4-triazole unit. TsPMAT (14) forms a dinuclear 2:2 complex with Co(BF4)2.6 H2O even when reacted in a metal-to-ligand molar ratio of 2:1. Similarly, the reaction of PMAT (15) with Mn(ClO4)2.6H2O or M(BF4)2.6 H2O (M=Fe, Co, Ni, Zn) in a ligand-to-metal molar ratio of 1:1 has afforded a series of complexes with the general formula [M(II) (2)(PMAT)2]X4. The metal centres in these complexes of TsPMAT (14) and PMAT (15) are encapsulated by two ligand molecules and doubly bridged by the N2 units of the 1,2,4-triazole moieties, which gives rise to N6 coordination spheres that are strongly distorted from octahedral, as evidenced by the X-ray crystal structure analyses of [Co(II) (2)(TsPMAT)(2)](BF(4))(4)6 MeCN (246 MeCN) and [Fe(II) 2(PMAT)2](BF4)4DMF (27DMF). Studies of the magnetic properties of [Co(II) 2(TsPMAT)2](BF4)4.4 H2O (244 H2O), [Mn(II) 2(PMAT)2](ClO4)4 (26), and [Co(II) 2(PMAT)2](BF4)4 (28) have revealed weak antiferromagnetic coupling (J=-3.3, -0.16, and -2.4 cm(-1), respectively) between the two metal centres in these complexes.  相似文献   

19.
A substituted 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) ligand, H(4) L, created to facilitate intermolecular interactions in the solid, has been used to obtain four novel Fe(II) complexes: [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?CH(3) NO(2) ?2?H(2) O, [Fe(H(4) L)(H(2) LBF(2) )](BF(4) )?5?C(3) H(6) O (H(2) LBF(2) is an in situ modified version of H(4) L), [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?C(3) H(7) OH and [Fe(H(4) L)(2) ](ClO(4) )(2) ?4?C(2) H(5) OH. Changing of spin-inactive components (solvents, anions or distant ligand substituents) causes differences to the coordination geometry of the metal that are key to the magnetic proper- ties. Magnetic measurements show that, contrary to the previously published complex [Fe(H(4) L)(2) ](ClO(4) )(2) ?H(2) O?2?CH(3) COCH(3) , the newly synthesised compounds remain in the high-spin (HS) state at all temperatures (5-300?K). A member of the known family of Fe(II) /3-bpp complexes, [Fe(3-bpp)(2) ](ClO(4) )(2) ?1.75?CH(3) COCH(3) ?1.5?Et(2) O, has also been prepared and characterised structurally. In the bulk, this compound exhibits a gradual and incomplete spin transition near 205?K. The single-crystal structure is consistent with it being HS at 250?K and partially low spin at 90?K. Structural analysis of all these compounds reveals that the exact configuration of intermolecular interactions affects dramatically the local geometry at the metal, which ultimately has a strong influence on the magnetic properties. Along this line, the geometry of Fe(II) in all published 3-bpp compounds of known structure has been examined, both by calculating various distortion indices (Σ, Θ, θ and Φ) and by continuous shape measures (CShMs). The results reveal correlations between some of these parameters and indicate that the distortions from octahedral geometry observed on HS systems are mainly due to strains arising from intermolecular interactions. As previously suggested with other related compounds, we observe here that strongly HS-distorted systems have a larger tendency to remain in that state.  相似文献   

20.
The syntheses, crystal structures, and magnetochemical characterization of five new iron clusters [Fe5O2(O2CPh)7(edte)(H2O)] (1), [Fe6O2(O2CBut)8(edteH)2] (2), [Fe12O4(OH)2(O2CMe)6(edte)4(H2O)2](ClO4)4 (3), [Fe12O4(OH)8(edte)4(H2O)2](ClO4)4 (4), and [Fe12O4(OH)8(edte)4(H2O)2](NO3)4 (5) (edteH4= N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine) are reported. The reaction of edteH4 with [Fe3O(O2CPh)6(H2O)3](NO3) and [Fe3O(O2CBut)6(H2O)3](OH) gave 1 and 2, respectively. Complex 3 was obtained from the reaction of edteH4 and NaO2CMe with Fe(ClO4)3, whereas 4 and 5 were obtained from the reaction of edteH4 with Fe(ClO4)3 and Fe(NO3)3, respectively. The core of 1 consists of a [Fe4(mu3-O)2]8+ butterfly unit to which is attached a fifth Fe atom by four bridging O atoms. The core of 2 consists of two triangular [Fe3(mu3-O)]7+ units linked together by six bridging O atoms. Finally, the cores of 3-5 consist of an [Fe12(mu4-O)4(mu-OH)2]26+ unit. Variable-temperature (T) and -field (H) solid-state direct and alternating current magnetization (M) studies were carried out on complexes 1-3 in the 1.8-300 K range. Analysis of the obtained data revealed that 1, 2, and 3-5 possess an S = 5/2, 5, and 0 ground-state spin, respectively. The fitting of the obtained M/N(muB) vs H/T data was carried out by matrix diagonalization, and this gave values for the axial zero-field splitting (ZFS) parameter D of -0.50 cm-1 for 1 and -0.28 cm-1 for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号