首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase the thermal and mechanical properties of the aliphatic polyester poly(butylene succinate) (PBS), a series of potentially biodegradable liquid crystalline aromatic/aliphatic random copolyesters were prepared by melt polycondensation of new mesogenic monomers dimethyl 4,4′-(terephthaloyldioxy) dibenzoate (MTB), dimethyl succinate, and 1,4-butanediol. The synthesized copolyesters were characterized by means of proton nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), polarizing light microscopy (PLM) and mechanical property measurements. The MTB content was varied so that the effects of the mesogen content on the thermal and mechanical properties, degradable behaviours and mesophase were examined. It was found that introducing the rigid rod mesogens could increase the thermal stability and the mechanical properties, while it reduced the melting temperature (Tm), the crystallization temperature (Tc), the degree of relative crystallinity (Xc) and the hydrolytic degradation rate. Only the homopolyester poly(butylenes terephthaloyldioxy dibenzoates) was able to show the schlieren texture characteristic of nematics.  相似文献   

2.
A series of biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate)-co-poly(butylene cyclohexanedicarboxylate)-b-poly(ethylene glycol) (PTCG), were prepared by a two-step melt polycondensation method and characterized by means of GPC, FTIR, NMR, DSC, TGA, etc. The effects of aliphatic ester content on the physical, mechanical and thermal properties, as well as in vitro and in vivo degradation behaviors were investigated. The decrease in mechanical strength was observed with an increase in poly(butylene cyclohexanedicarboxylate) (PBC) molar fraction. DSC results showed one melting point and two glass transition temperatures in all samples, and the melting temperature was found to go down gradually as more cyclohexanedicarboxylic acid (CHDA) was added. During the in vitro and in vivo degradation processes, erosion of the surface was dominant as evidenced by scanning electron microscopic observations. The copolyesters containing many CHDA units were featured by the higher water uptake and faster degradation due to much richer amorphous phase within them.  相似文献   

3.
In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO_2 hybrids based on terephthalic acid(TPA),poly(L-lactic acid) oligomer(OLLA),1,4-butanediol(BDO) and nano-SiO_2.TEM and FT-IR characterizations confirmed that TPA,OLLA and BDO copolymerized to obtain biodegradable copolyesters,poly(burylene terephthalate-co-lactate)(PBTL),and the abundant hydroxyl groups on the surface of nano-SiO_2 provided potential sites for in situ grafting with the simultaneo...  相似文献   

4.
Functional aliphatic copolyesters of succinic acid (SA) and citric acid (CA) were synthesized via direct copolycondensation in the presence of 1,4‐butanediol, with titanium(IV) butoxide as a catalyst. The effects of the comonomer and comonomer ratio on the polycondensation and the melting and glass‐transition temperatures were investigated. The melting temperature was very sensitive to the molar ratio of the SA–CA comonomer units. The chain extension of this poly(butylene succinate citrate) was carried out with hexamethylene diisocyanate. The intrinsic viscosity, crystallinity percentage, and rheological properties of these copolyesters were also studied. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3232–3239, 2002  相似文献   

5.
Poly(propylene adipate) (PPA) and poly(propylene isophthalate/adipate) (PPI-PPA) random copolymers of various compositions were synthesized in bulk and characterized in terms of chemical structure and molecular weight. Furthermore, the thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers showed a good thermal stability. At room temperature they appeared as semicrystalline materials, except the copolymers containing 20 and 30 mol% of PI units: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. The crystalline phase of PPI and PPA was evidenced at high content of propylene isophthalate or propylene adipate units, respectively. Amorphous samples were obtained after melt quenching and an increment of Tg as the content of PI units is increased was observed. This behavior was explained as due to the stiff phenylene groups in the polymeric chain. The Wood equation was found to describe well Tg-composition data. Lastly, the presence of a rigid-amorphous phase was evidenced in the copolymers, differently from PPA homopolymer.  相似文献   

6.
Network copolyesters were prepared from glycerol (Yg) and sebacic acid (10) with 10–90 mol % of either succinic acid (4), 1,12-dodecanedicarboxylic acid (14), 1,18-octadecanedicarboxylic acid (20), or terephthalic acid (T). Prepolymers prepared by melt-polycondensation were cast from dimethylformamide solution and postpolymerized at 230–250°C for various periods of time to form a network. The resultant films were transparent, flexible, and insoluble in organic solvents. The network copolyesters obtained were characterized by infrared absorption spectra, wide angle X-ray diffraction analysis, density measurement, thermomechanical analysis, differential scanning calorimetry, and tensile test. The enzymatic degradation was estimated by weight loss of the network copolyester films in a buffer solution with Rhizopus delemar lipase at 37°C. The weight loss due to the enzymatic degradation was decreased with increasing comonomer content, and the copolyesters with Yg4, Yg20 and YgT more than 50 mol % were not degraded by lipase enzyme at all. On the contrary, Yg-10/14 films were degraded appreciably over whole range of comonomer composition. With increasing comonomer content, the heat distortion temperature increased gradually, while the tensile strength and Young's modulus were not changed much. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2005–2011, 1999  相似文献   

7.
This paper describes synthesis, characteristics and hydrolytic degradation of functional poly(ester-anhydride)s based on oligo(3-allyloxy-1,2-propylene succinate) (OSAGE) and aliphatic diacids (DA). The polymers were obtained by polycondensation of OSAGE with adipic (ADP), sebacic (SBA) or dodecanedicarboxylic acid (DDC). The carboxyl groups in OSAGE and in diacids were converted to mixed anhydride groups by acetylation with acetic anhydride. After that, prepolymers thus obtained were condensed in vacuum to yield poly(ester-anhydride)s. The structure of copolymers was confirmed by NMR spectroscopy. Influence of the kind of diacid and the OSAGE to diacid ratio on selected properties of poly(ester-anhydride)s were examined. Poly(ester-anhydride)s were subjected to hydrolytic degradation at 37 °C, in aqueous phosphate buffer solution of pH 7.41 (PBS). The course of degradation was monitored by determination of weight loss of samples, 1H NMR and DSC. Fracture surfaces of samples during degradation were examined by scanning electron microscopy.  相似文献   

8.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   

9.
Novel biodegradable-cum-crosslinkable polyesters end-capped by biomesogenic units, cinnamic acid (CA) and ferulic acid (FA), were synthesized via chain-growth polycondensation in solid-liquid phase. The chemical structure of synthesized polymers was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). The composition of polyesters, which was calculated by 1H NMR, was in agreement with the feed ratios. The thermal properties and crystallinity of polyesters were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (WXRD) and polarizing-light microscopy (PLM). It was found that the polyesters possessed good crystallinity. Furthermore, the obtained polyesters could be crosslinked with methyl methacrylate (MMA), n-butyl acrylate (BA) and styrene (St) under thermal condition. The crosslinked products possessed degradability in phosphate buffer solution at 37 °C, which might be potentially applied as biomaterials.  相似文献   

10.
<正>In this article,six new optically active copoly(amide-imide)s(10a-f) were synthesized through the direct polycondensation reaction of N-phthalimido-L-aspartic acid(4) with 1,5-diamino naphthalene(8),3,4-diamino benzophenone(9) in the presence of therphthahc acid(7),fumaric acid(6) and adipic acid(5) as a second diacid in a medium consisting of N-methyl-2-pyrrolidone,triphenyl phosphite, calcium chloride and pyridine.The resulting copolymers were fully characterized by means of FT-IR spectroscopy,elemental analyses, inherent viscosity,solubility tests and UV-vis spectroscopy.Thermal properties of resulting copolymers(10a-c) containing three different second diacid in the main chain were compared by using TGA and DTG thermograms.  相似文献   

11.
A new family of castor oil based biodegradable polyesters was synthesized by catalyst free melt condensation reaction between two different diacids and castor oil with d-mannitol. The polymers synthesized were characterized by NMR spectroscopy, FT-IR and the thermal properties were analysed by DSC. The results of DSC show that the polymer is rubbery in physiological conditions. The contact angle measurement and hydration test results indicate that the surface of the polymer is hydrophilic. The mechanical properties, evaluated in the tensile mode, shows that the polymer has characteristics of a soft material. In vitro degradation of polymer in PBS solution carried out at physiological conditions indicates that the degradation goes to completion within 21 days and it was also found that the rate of degradation can be tuned by varying the curing conditions.  相似文献   

12.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

13.
Stereoblock poly(lactic acid) consisting of D- and L-lactate stereosequences can be successfully synthesized by solid-state polycondensation of a 1:1 mixture of poly(L-lactic acid) and poly(D-lactic acid). In the first step, melt-polycondensation of L- and D-lactic acids is conducted to synthesize poly(L-lactic acid) and poly(D-lactic acid) with a medium-molecular-weight, respectively. In the next step, these poly(L-lactic acid) and poly(D-lactic acid) are melt-blended in 1:1 ratio to allow formation of their stereocomplex. In the last step, this melt-blend is subjected to solid-state polycondensation at temperature where the dehydrative condensation is allowed to promote chain extension in the amorphous phase with the stereocomplex crystals preserved. Finally, stereoblock poly(lactic acid) having high-molecular-weight is obtained. The stereoblock poly(lactic acid) synthesized by this way shows a higher melting temperature in consequence of the controlled block lengths and the resulting higher-molecular-weight. The product characterization as well as the optimization of the polymerization conditions is described. Changes in M(w) of stereoblock poly(lactic acid) (sb-PLA) as a function of the reaction time.  相似文献   

14.
Morphological behaviour of poly(lactic acid) during hydrolytic degradation   总被引:1,自引:0,他引:1  
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg.  相似文献   

15.
A series of bio-based poly(butylene adipate-co-butylene furandicarboxylate) (PBAFs) copolyesters were synthesized from 2,5-furandicarboxylic acid (FDCA), adipic acid (AA), and 1,4-butanediol (BDO) through a two-step polycondensation reaction. The copolyesters were characterized by 1H NMR, GPC, DSC, XRD and tensile tests, and their enzymatic degradation behaviors were also investigated. They were random copolymers whose composition was well controlled and the weight average molecular weight (Mw) ranged from 54,100 to 76,800 g/mol. By combining the results of DSC and XRD, with increasing FDCA content, PBAFs changed from semi-crystalline polymers to nearly amorphous polymers, then to semi-crystalline polymers again. Specifically, the crystallizability and melting temperature (Tm) decreased with FDCA content 0–50 mol%, but rose again at FDCA content 75–100 mol%. And, the glass transition temperature (Tg) increased continuously with increasing FDCA content. Consequently, the tensile modulus and strength decreased but the ultimate elongation increased at lower FDCA content (0–50 mol%), which were converse at higher FDCA content (75–100 mol%). Especially, the P(BA-40 mol% BF) shows outstanding elasticity and rebound resilience. In addition, the influences of FDCA content on the enzymatic degradation by lipase from porcine pancreas were studied in terms of the weight loss and morphological change. At FDCA content of 0–50 mol%, the copolyesters showed biodegradability but only the degradation rate of P(BA-10 mol% BF) was faster than PBA. When the FDCA content were 75–100 mol%, they were actually un-degradable. Thus, depending on their composition, PBAFs might find applications from biodegradable elastomers to thermoplastics.  相似文献   

16.
Copolyesters containing rigid segments (naphthalene and terephthalene) and flexible seg-ments (aliphatic diol) structure were synthesized from DMN/DMT/EG (2,6-dimethyl naphthalate/1,4-dimethyl terephthalate/ethylene glycol) ternary monomers with various mole ratios. Copolyesters having intrinsic viscosities of 0.52–0.65 dL/g were obtained by melt polycondensation in the presence of metallic catalysts. The effect of reaction tem-perature and time on the formation of the copolyesters was investigated to obtain an op-timum condition for copolyester manufacturing. The optimum condition for PNT (poly-ethylene naphthalate terephthalate) copolyester manufacturing is the transesterification under nitrogen atmosphere for 4 h at a temperature of 185±2°C followed by polymerization under 2 mm Hg for 2 h at a temperature of 280°C. Most copolyesters have better solubilities than poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) in various solvents. The effect of the starting mole ratio of DMN, DMT, and EG on the thermal properties of the resulted copolyesters was also investigated using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of copolyesters were in the range of 70.7–115.2°C, and 10% weight loss in nitrogen were all above 426°C. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Biodegradable poly(sebacic anhydride-co-caprolactone) (PSA-co-PCL) multi-block copolymers were prepared by condensation of acylated PSA and PCL prepolymers with different weight ratios. The homopolymer and copolymers were characterized by 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and atom force microscope (AFM). 1H-NMR and GPC has indicated the formation of PSA-co-PCL multi-block copolymers, in which PSA and PCL segments are randomly distributed. The incorporation of PCL segments into the molecule chains even at a content of 20 wt% could significantly decrease the molecular weight distribution of the copolymer and increase its weight average molecular weight, as compared with PSA homopolymer. DSC has revealed that the melting temperature and degree of crystallinity for both SA and CL components are strongly composition dependent, implying the hindrance effect of the two components on crystallinity of each other. AFM observation has shown the difference in crystalline structures between PSA and PCL phases in the copolymers. In-vitro degradation tests performed at 37 °C in PBS buffer solution (pH 7.4, 0.1 M) have demonstrated the acceleration of degradation rate of the sample with increasing SA content in the copolymer.  相似文献   

18.
A series of aliphatic biodegradable poly(butylene succinate-co-dl-lactide) (PBSLA) copolyesters were synthesized with the aim of improving the degradation rate of poly(butylene succinate) (PBS) by incorporation of dl-oligo(lactic acid) (OLA) into the PBS molecular chains. The composition and sequential structure of the aliphatic copolyesters were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. The crystallization behaviors, the crystal structure and morphology of the copolyesters were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization of the copolyesters was restricted by the incorporation of lactide (LA) units, which further tuned the mechanical properties of the copolyesters. The copolyesters could form complete spherulites and exhibit the same crystal structure as that of PBS. Enzymatic study indicated that the copolyesters with higher content of LA units degraded faster, and the degradation began in the amorphous regions and then in the crystalline regions. The morphology and the resulting degradation products of the copolyesters were investigated by scanning electron microscopy (SEM) and 1H NMR analysis during the degradation process.  相似文献   

19.
A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.  相似文献   

20.
Synthesis and thermal properties of poly(aliphatic/aromatic-ester) copolymers containing additionally poly(dimethylsiloxane) (PDMS) chains in the soft segments are discussed. A two step method of transesterification and polycondensation from the melt was carried out in a presence of magnesium-titanate catalyst. An aliphatic dimer fatty acid was used as a component of the soft segments while poly(butylene terephthalate) (PBT) constituted the hard blocks. Effectiveness of the incorporation of PDMS into polymer chain was confirmed by the Soxhlet extraction and infrared spectroscopy of an excess of 1,4-butane diol destilled off from the polycondensation reaction. Multiblock copolymers showed microphase separation as determined by differential scanning calorimetry. Incorporation of a small amount of PDMS (up to 14.5 wt.-%) into polymer chain containg low concentration of hard segments of PBT lead to decrease in crystallinity of such copolymers. This may indicate that semicrystalline PBT are dissolved in the amorphous matrix of the soft segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号