首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-induced difference THz spectroscopy was used to investigate the dielectric response of free-stand single-walled carbon nanotubes (SWCNTs) films in THz region. We observed an enhanced transmission of the peak-signal of THz wave through SWCNTs films under 800 nm pump. In frequency domain, the transparency came from 0.5 to 2.1 THz and the absorption was in 2.1–3.0 THz region. The pump power dependency of the transmission showed this was a nonlinear effect. The dielectric constant response of the SWCNTs films was analyzed theoretically. The analysis suggests that the nonlinear optical properties stem from two factors, which are Drude and Lorentz term for metallic and semiconducting SWCNTs, respectively.  相似文献   

2.
Transparent and conductive single-walled carbon nanotube (SWNT) films are of great importance to a number of applications such as optical and electronic devices. Here, we describe a simple approach for preparing free-standing highly conductive transparent SWNT films with a 20-150 nm thickness by spray coating from surfactant-dispersed aqueous solutions of SWNTs synthesized by an improved floating-catalyst growth method. After the HNO(3) treatment, dipping the SWNT films supporting on glass substrates in water resulted in a quick and nondestructive self-release to form free-standing ultrathin SWNT films on the water surface. The obtained films have sufficiently high transmittance (i.e., 95%), a very low sheet resistance (i.e., ~120 Ω/sq), and a small average surface roughness (i.e., ~3.5 nm for a displayed 10 × 10 μm area). Furthermore, the floating SWNT films on the water surface were easily transferred to any substrates of interest, without intense mechanical and chemical treatments, to preserve their original sizes and network structures. For example, the transferred SWNT films on poly(ethylene terephthalate) films are mechanically flexible, which is a great advantage over conventional indium-tin oxide (ITO) and therefore strongly promise to be "post ITO" for many applications.  相似文献   

3.
A detailed study is presented on the optical absorption of thin films of single-walled carbon nanotubes (SWNT) under electrochemical conditions. The procedure for the preparation of free-standing semitransparent films of SWNT is used for the fabrication of a working electrode for transmission optical spectroelectrochemistry. The analysis of the potential dependent spectroscopic response of the SWNT film benefits from the widest possible electrochemical window, in which the charging of SWNT can safely be investigated. This electrochemical window is not limited by parasitic electrochemistry and/or galvanic breakdown reactions occurring at supporting electrode materials such as indium–tin oxide conducting glass or semitransparent Pt film, which were employed in earlier studies. Electrochemical doping of SWNT is observable at the optical absorptions, which are assigned to allowed electronic transitions between van Hove singularities in the density of states of SWNT. Furthermore, the spectral response of counterions, balancing the charging of the nanotube skeleton, is traceable at certain conditions. The latter effect is monitored here through the overtones of C–H stretching vibrations from tetrabutylammonium cations.  相似文献   

4.
The glass-transition temperatures (Tg's) of nanocomposites of polystyrene (PS) and single-walled carbon nanotubes were measured in the bulk and in thin films with differential scanning calorimetry and spectroscopic ellipsometry, respectively. The bulk Tg of the nanocomposites increased by approximately 3 °C and became much broader than that of PS. For the nanocomposite films thinner than 45 nm, Tg decreased with decreasing film thickness [i.e., ΔTg(nano) < 0]. This phenomenon also occurred in thin PS films, the magnitude of the depression in PS [ΔTg(PS)] being somewhat larger. The film thickness dependence and the differences in the magnitude of ΔTg in the two systems were examined in light of current theory, and a quantitative comparison was made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3339–3345, 2003  相似文献   

5.
We present the in situ formation of crystalline CdSe quantum dots on the surfaces of oxidized, ozonized single-walled carbon nanotubes, which is a rational synthetic route to the synthesis of complex hierarchical assemblies.  相似文献   

6.
Films of chemically shortened and functionalized single-walled carbon nanotubes (SWNTs) have been formed on a gold electrode by electrophoretic deposition. Applying ultrasonic energy resulted in dramatic changes of the film morphology; the deposited SWNT bundles reassembled and oriented normal to the electrode. Oriented SWNT bundles with high density (more than 250 bundles/microm (2)) not only presented narrow size distributions, but uniformly spread on the electrode. We discuss the mechanism of SWNT orientation by analyzing the variation in the film morphology with ultrasonication time. In addition, we suggest that the 3D displays of AFM images can lead to misjudgment of nanotube alignment. The method for aligning SWNTs normal to the electrode may be competitive with chemical vapor deposition or screen printing, the predominant methods by which vertically aligned SWNT films have been fabricated to date.  相似文献   

7.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

8.
We present results for the isothermal adsorption kinetics of methane, hydrogen, and tetrafluoromethane on closed-ended single-walled carbon nanotubes. In these experiments, we monitor the pressure decrease as a function of time as equilibrium is approached, after a dose of gas is added to the cell containing the nanotubes. The measurements were performed at different fractional coverages limited to the first layer. The results indicate that, for a given coverage and temperature, the equilibration time is an increasing function of E/(k(B)T), where E is the binding energy of the adsorbate and k(B)T is the thermal energy. These findings are consistent with recent theoretical predictions and computer simulations results that we use to interpret the experimental measurements.  相似文献   

9.
The arrays of gold nanoparticles (AuNPs) were fabricated on flexible and transparent single-walled carbon nanotube (SWCNT) films using the electrochemical deposition method, and the patterned nanotubes were then used as electrodes for hydroxylamine detection. The sizes and densities of the AuNPs could easily be controlled by varying the amount of charge deposited, and the gold-deposited area showed a homogeneous distribution on the exposed SWCNT film surface. X-ray diffraction analysis of the AuNPs shows a face-centered cubic structure that is dominated by the lowest energy {111} facets. The oxidation of the hydroxylamine on the AuNP-deposited SWCNT films depended strongly on the solution pH, and the maximum catalytic current was observed at a pH of 9.0. A linear electrical response was observed for concentrations ranging from 0.016 to 0.210 mM, and the detection limit and the sensitivity were 0.72 μM and 165.90 μAmM?1 cm?2, respectively. Moreover, the amperometric response in hydroxylamine showed a stable response for a long time (300 s), during which time it retained 94% of its initial value. In the long-term storage stability test, the current response to hydroxylamine decreased slightly, with only 17% leakage after 30 days.  相似文献   

10.
DNA oligonucleotides were covalently immobilized to prepatterned single-walled carbon nanotube (SWNT) multilayer films by amidation. SWNT multilayer films were constructed via consecutive condensation reactions creating stacks of functionalized SWNT layers linked together by 4,4'-oxydianiline. Aminated- or carboxylated-DNA oligonucleotides were covalently immobilized to the respective carboxylated or aminated SWNT multilayer films through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. UV-vis-NIR spectroscopic analysis indicated that the SWNT film surface density increased uniformly according to the number of reaction cycles. Scanning electron microscopy and contact angle measurements of the SWNT multilayer film revealed a uniform coverage over the substrate surface. The covalent attachment of DNA oligonucleotides to the SWNT multilayer films and their subsequent hybridization with complementary oligonucleotides were verified using X-ray photoelectron spectroscopy and fluorescence-based measurements. This is the first report demonstrating that DNA oligonucleotides can be covalently attached to immobilized SWNT multilayer films. The anchored DNA oligonucleotides were shown to exhibit excellent specificity, realizing their potential in future biosensor applications.  相似文献   

11.
Single-walled carbon nanotubes (SWNTs) have been used successfully to fabricate highly transparent and flexible field emission displays (FEDs). Field emission measurements indicated that SWNTs films have great potential to work as building blocks for next generation transparent and flexible FEDs.  相似文献   

12.
13.
14.
We present a study on the electronic behavior of films of as-prepared and purified single-walled carbon nanotubes (SWNTs) and demonstrate the important role that chemical functionalization plays in modifying their electronic properties, which in turn throws further light on the mechanism of action of SWNT-based sensors. Films of electric arc SWNTs were prepared by spraying, and optical spectroscopy was used to measure the effective film thickness. The room-temperature conductivities (sigma(RT)) of thin films deposited from as-prepared and purified SWNTs are in the range sigma(RT) = 250-400 S/cm, and the nonmetallic temperature dependence of the conductivity indicates the presence of tunneling barriers, which dominate the film conductivity. Chemical functionalization of SWNTs with octadecylamine (ODA) and poly(m-aminobenzenesulfonic acid) (PABS) significantly decreases the conductivity; sigma(RT) = 3 and 0.3 S/cm for SWNT-ODA and SWNT-PABS, respectively.  相似文献   

15.
Field-effect transistors were fabricated using high-density single-walled carbon nanotube (SWNT) thin films directly grown on suitable substrates. Such approach eliminated the variations of device behaviors in individual SWNT devices by utilizing a large number of SWNTs in each device. We have found that the behaviors of such devices are closely related to the surface charge densities around SWNTs in aqueous solutions. Adsorption of ionic surfactants on the surface could significantly modulate the device characteristics, which could be detected by measuring the conductance of the devices. The devices could be tuned to be sensitive to either anionic or cationic surfactants by tailoring the surface properties of SiO(2) substrates around SWNTs. This effect could be potentially used to design chemical and biological sensors.  相似文献   

16.
Sequential adsorption of water and organic vapor mixtures onto single-walled carbon nanotube (SWNT) bundles is studied experimentally and by grand canonical Monte Carlo (GCMC) simulation to elucidate the distinct interactions between select adsorbates and the nanoporous structure of SWNTs. Experimental adsorption isotherms on SWNT bundles for hexane, methyl ethyl ketone, cyclohexane, and toluene individually mixed in carrier gases that were nearly saturated with water vapor are compared with the GCMC-simulated isotherms for hexane, as a representative organic, on the external surface of the heterogeneous SWNT bundles. From the nearly perfect overlap between the experimental and simulated isotherms, it is concluded that until near saturation only the internal pore volume of pristine SWNT bundles fills with water. The adsorption of water vapor on the peripheral surface of the bundles remains insignificant, if not negligible, in comparison to the adsorption of water in the internal volume of the bundles. This is in contrast with the adsorption of pure hexane, which exhibits appreciable adsorption both inside the bundles and on their external surface. It is also suggested that during competitive adsorption, water molecules take precedence over small nonpolar and polar organic molecules for adsorption inside SWNTs and leave unoccupied the hydrophobic external surface of the bundles for other more compatible adsorbates.  相似文献   

17.
A convenient method to obtain patterns of films of single-walled carbon nanotubes (SWNT) bundles on flexible plastic is described. Using the Line Patterning method SWNT films of thickness ranging from approximately 300-1500 nm can be obtained from aqueous surfactant-supported dispersions of chemically purified SWNT bundles synthesized by the pulsed-laser ablation method. These films are strongly adherent and are competitive in performance with commercially available films of indium-tin-oxide (ITO) on plastics. For example, an approximately 1500 thick film of SWNT on poly(ethylene terephthalate) (PET) shows a surface resisitvity of approximately 80 Omega/sq, optical transparency >80%, and robust flexibility. Unlike ITO/PET, films of SWNT/PET can be folded and bent to a crease without cracking. The simple techniques involoved in obtaining these films (i.e., those without requiring lithography or ink-jet printing) could help facilitate the rapid fabrication of transparent, flexible electronic devices, heralding what promises to be a new approach towards the development of next-generation optoelectronic devices.  相似文献   

18.
The diameter of single walled carbon nanotubes (SWNTs) determines the electronic properties of the nanotube. The diameter of carbon nanotubes is dictated by the diameter of the catalyst particle. Here we describe the use of iron nanoparticles synthesized within the Dps protein cage as catalysts for the growth of single-walled carbon nanotubes. The discrete iron particles synthesized within the Dps protein cages when used as catalyst particles gives rise to single-walled carbon nanotubes with a limited diameter distribution.  相似文献   

19.
We have succeeded in dispersing single-walled carbon nanotubes (SWNTs) into an aqueous solution of poly(ethylene glycol)-terminated malachite green derivative (PEG-MG) through simple sonication. It was found that UV exposure caused reaggregation of these predispersed SWNTs in the same aqueous medium, as adsorbed PEG-MG photochromic chains could be effectively photocleavaged from the nanotube surface. The observed light-controlled dispersion and reaggragation of SWNTs in the aqueous solution should facilitate the development of SWNT dispersions with a controllable dispersity for potential applications.  相似文献   

20.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号