首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

2.
Thermal decomposition kinetics of ML2 (M = Ni(II) and Co(II); L = 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione) complexes were investigated by thermogravimetric analysis (TGA). The first decomposition process of the NiL2 and CoL2 complexes occurs in the temperature range of 320–350 °C. Kinetics parameters corresponding to this step, such as activation energy, Eα, and apparent pre-exponential factor, ln Aaap, were calculated from the thermogravimetric data at the heating rates of 5, 10, 15 and 20 K min−1 by differential (Friedman's equation) and integral (Flynn–Wall–Ozawa's equation) methods. The results show that the activation energy evidently depends on the extent of conversion. As far as their activation energy is concerned, NiL2 complex shows a higher thermal stability than the CoL2 complex.  相似文献   

3.
Two new Pd(II) N-heterocyclic iminocarbene complexes (C-N)PdCl2 that contain 5-membered chelate rings have been prepared by carbene transfer from a silver iminocarbene precursor to (COD)PdCl2. The new Pd imonocarbene complexes, as well as two that have been previously reported (altogether three 5-membered and one 6-membered chelate ring complexes) have been evaluated as catalysts for the Suzuki-Miyaura coupling reaction. The complexes were found to be active in the reaction, but without exceptional catalytic performances. The 5-membered chelate ring complexes appeared to be more robust and remained active for a longer time than the 6-membered ring congener. The catalytic performance of the 5-membered chelate ring complexes appeared to be rather insensitive to the steric demands of the imine-N-aryl group. The X-ray structure of one of the Ag iminocarbene complexes reveals the κ1(C) bonding of the iminocarbene moiety in a nearly linear Ag(I) complex; two monomeric units are associated through a weak Ag-Ag interaction. The X-ray structures of two new Pd iminocarbene complexes (C-N)PdCl2 confirm the chelating κ2(C,N) nature of the iminocarbene moiety; in both complexes, the Pd-Cl distances trans to carbene-C are slightly longer than those trans to imine-N.  相似文献   

4.
Phosphines and bisphosphines derived from hindered ortho-substituted diaryl ethers and diarylsulfones by lithiation are, with appropriate substitution patterns, resolvable atropisomeric ligands which form crystalline complexes with palladium dichloride.  相似文献   

5.
Four β-ketoimine ligands (two series) were prepared through traditional condensation reactions of β-diketones with 2,6-substituted anilines. Reaction took place only at the cyclohexanone carbonyl rather than at the acetyl or benzoyl carbonyl, even if more than two equivalents of the amines were added. Consequently, four new moisture- and air-stable bis(β-ketoamino)nickel(II) complexes, Ni[2–CH3C(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (1); Ar?=?2, 6-Me2C6H3, (2) and Ni[2–PhC(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (3); Ar?=?2, 6-Me2C6H3, (4) were obtained and characterized. The solid-state structures of complex 1, 2 and 3 have been determined by single-crystal X-ray diffraction. Additionally, these complexes can be applied as highly active catalyst precursors for vinyl polymerization of norbornene (NBE) after activation with methylaluminoxane (MAO).  相似文献   

6.
Summary Platinum(II) and Palladium(II) complexes with 2-mercaptopyrimidine, 2-thiocytosine (4-aminopyrimidine 2-thione), and isocytosine (2-amino-4-hydroxy pyrimidine) were prepared and characterised by elemental analysis, conductivity data, i.r.,1H n.m.r. and13C n.M.r. spectral studies. 2-Mercaptopyrimidine and 2-thiocytosine are coordinated to the metal ion through N(3) and C2S, thus forming a four-membered chelate ring. Isocytosine acts as a monodentate ligand and coordinates to the metal ion through N(1). All the complexes are non-electrolytes.  相似文献   

7.
Axial and center chirality of Pd complexes with tropos biphenyl secondary diamine ligands is shown to be controlled by chiral amide (R)-DABNTf, which can efficiently discriminate between two enantiomeric Pd complexes.  相似文献   

8.
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))PdCl(2)] (12) and [trans-(kappa(2)-(Mes)CN(H)C(Mes))PdCl(2)] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C(s) symmetry and for 13 rotation of the mesityl groups is prevented. In the related C(1) complex [(kappa(3)-(tBu)CN(H)C(tBu))PdCl][Cl] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12-14 and two equivalents of AgBF(4) in acetonitrile gives the analogous complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))Pd(MeCN)(2)][BF(4)](2) (15), [trans-(kappa(2)-(Mes)CN(H)C(Mes))Pd(MeCN)(2)][BF(4)](2) (16) and [(kappa(3)-(tBu)CN(H)C(tBu))Pd(MeCN)][BF(4)](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors (tBu)C(H)N(Bn)C(H)(tBu)][Cl](2) (2) and [(tBu)C(H)N(H)C(H)(tBu)][BPh(4)](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.  相似文献   

9.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

10.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

11.
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (14) of the type [PdX2(HdmIPz)2] {X = Cl (1); Br (2); I (3); SCN (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137–605 °C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).  相似文献   

12.
Palladium(II) chloride complexes bearing the nucleobases, adenine, cytosine and guanine, have been synthesized and characterized by UV–vis spectrophotometric methods, magnetic susceptibility, molar conductivity, elemental analysis, FTIR and 1H-NMR. The complexes were found to have the general composition PdCl2(NH3L) (where L = adenine, cytosine or guanine). Square-planar geometry is proposed for these Pd(II) complexes based on magnetic evidence and electronic spectra. The complexes as well as the free nucleobase ligands show varying degrees of cytotoxicity on human promyelocytic leukemia (HL60) and human histiocytic leukemia (U937) cell lines, with cis-[PdCl2(NH3)(Gua)] showing IC50 values of 48.03 ± 9.67 and 11.12 ± 3.42 µM against HL60 and U937, respectively. The complexes as well as the ligands did not show anti-proliferative activity against a normal human cell line (NB1RGB). The complexes also show significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical as well as glutathione S-transferase inhibitory activity.  相似文献   

13.
This study describes the synthesis, IR, 1H, and 13C{1H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl2(HmPz)2] 1, [PdBr2(HmPz)2] 2, [PdI2(HmPz)2] 3, [Pd(SCN)2(HmPz)2] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd0 by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 ≈ 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.  相似文献   

14.
Two Pd(II) complexes involving Schiff base ligands, namely, [Pd(L1)2] (1), [Pd2(L2)Cl2] (2) [HL1 = 2-((2,6-diisopropylphenylimino)methyl)-4,6-dibromophenol, L2 = N-(4-isopropylbenzylidene)-2,6-diisopropylbenzenamine] have been synthesized using solvothermal methods and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, UV–vis absorption spectra, and single-crystal X-ray diffraction. Complex 1 is a mononuclear cyclometalated Pd(II) complex, whereas complex 2 is a μ-chloro-bridged dinuclear. Both 1 and 2 display photoluminescence in the solid state at 298 K and possess fluorescence lifetimes (τ 1 = 86.40 ns, τ 2 = 196.21 ns, τ 3 = 1,923.31 ns at 768 nm for 1, τ 1 = 69.92 ns, τ 2 = 136.40 ns, τ 3 = 1,714.26 ns at 570 nm for 2). The Suzuki reactions of 4-bromotoluene with phenylboronic acid by complexes 12 have also been studied.  相似文献   

15.
Summary Platinum(II) and palladium(II) chloride complexes with purine, pyrimidine (pyrimid),N-ethylimidazole(N-EtIm) andN-propylimidazole(N-PropIm) ligands have been prepared and characterized by analysis and spectroscopic methods. The compounds have general formula M(L1)(L2)Cl2 where M=PtII, PdII; L1=purine or pyrimid, L2=N-EtIm orN-PropIm, except the complexes Pt(purine)(pyrimid)Cl2 and [Pd(purine)(pyrimid)2Cl]Cl and [Pt(purine)2 (N-propIm)Cl]Cl·2H2O.  相似文献   

16.
Novel moisture and air stable, cationic palladium(II) amine complexes (14) of the general type [Pd(N∩N)(X)2](BF4)2, [N∩N=1,2-bis(N-indolinyl)ethane (BIE) 1, 3; 1,2-bis(N-1,2,3,4-tetrahydroquinolinyl)ethane (BTQE) 2, 4; X=NCCH3, H2O] were found to catalyze the polymerization reaction of bicyclo[2.2.1]hept-2-ene at room temperature. The amorphous polymer products consist of 2,3-linked norbornene units; no indications for ring opened species could be observed. The polymerization activity of the diaqua-complexes 3, 4 is superior compared to their acetonitrile analogues due to a facile activation by a Wacker-type reaction. The cationic Pd(II)-compounds are inactive towards homo- and copolymerization reactions of polar monomers, like acrylates or carbon monoxide. However, addition of methylacrylate resulted in polynorbornene products with increased molecular weight and narrow molecular weight distributions.  相似文献   

17.
A synthetic procedure for preparation of new amphiphilic copper(II) and nickel(II) azamacrocyclic complexes bearing aromatic substituents is developed. The nature of substituents is shown to exert a negligible influence on spectral and electrochemical characteristics of the prepared compounds. The X-ray diffraction analysis of three copper complexes revealed the formation of the dimers of macrocyclic cations associated by noncovalent interactions, nature of which is determined by the structure of the substituent in the macrocyclic ligand.  相似文献   

18.
Bis(imino)pyridine palladium(II) complexes 3-6 were synthesized by two different methods. The structure of complexes 3 and 4 has been confirmed by X-ray structure analysis. The catalytic studies show that bis(imino)pyridine palladium(II) complexes are highly efficient catalysts in the Suzuki-Miyaura reaction and the complex 4 was used to catalyze the synthesis of fluorinated liquid crystalline compounds via Suzuki coupling reaction.  相似文献   

19.
《Comptes Rendus Chimie》2016,19(5):614-629
The treatment of [PdL3(NH3)](OTf)n (n = 1; L3 = (PEt3)2(Ph), (2,6-(Cy2PCH2)2C6H3), n = 2; L3 = (dppe)(NH3)) with NaNH2 in tetrahydrofuran at ambient temperature or −78 °C afforded the dimeric and monomeric parent-amido palladium(II) complexes anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (1), [Pd(dppe)(μ-NH2)]2(OTf)2 (2), and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (3), respectively. The molecular structures of the amido-bridged (μ-NH2) dimeric complexes 1 and 2 were determined by single-crystal X-ray crystallography. The monomeric amido complex 3 reacted with trace amounts of water to give a hydroxo complex, Pd(2,6-(Cy2PCH2)2C6H3)(OH) (4). Exposing complex 3 to an excess of water resulted in the complete conversion of the complex into two species [Pd(2,6-(Cy2PCH2)2C6H3)(OH2)]+ and [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 3 reacted with diphenyliodonium triflate ([Ph2I]OTf) to give the aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf. The reaction of 3 with phenylacetylene (HCCPh) yielded a palladium(II) acetylenide Pd(2,6-(Cy2PCH2)2C6H3)(CCPh) (5), quantitatively, along with the liberation of ammonia. The reaction of 3 with dialkyl acetylenedicarboxylate yielded diastereospecific palladium(II) vinyl derivatives (Z)-Pd(2,6-(Cy2PCH2)2C6H3)(CRCR(NH2)) (R = CO2Me (6a), CO2Et (6b)). The reaction of complexes 6a and 6b with p-nitrophenol produced Pd(2,6-(Cy2PCH2)2C6H3)(OC6H4-p-NO2) (7) and cis-CHRCR(NH2), exclusively. Reactions of 3 with either dialkyl maleate (cis-(CO2R)CHCH(CO2R)) (R = CH3, CH2CH3) or cis-stilbene (cis-CHPhCHPh) did not result in any addition product. Instead, isomerization of the cis-isomers to the trans-isomers occurred in the presence of catalytic amounts of 3. Complex 3 reacted with a stoichiometric amount of acrylonitrile (CH2CHCN) to generate a metastable insertion product, Pd(2,6-(Cy2PCH2)2C6H3)(CH(CN)CH2NH2). On the other hand, the reaction of 3 with an excess of acrylonitrile slowly produced polymeric species of acrylonitrile. The catalytic hydroamination of olefins with NH3 was examined in the presence of Pd(2,6-(Cy2PCH2)2C6H3)(OTf), producing a range of hydroaminated products of primary, secondary, and tertiary amines with different molar ratios of more than 99% overall yield. A mechanistic feature for the observed catalytic hydroamination is described with regard to the aminated derivatives of palladium(II).  相似文献   

20.
Reaction of 2-arylbenzimidazole with PdCl2(CH3CN)2 in CH2Cl2 affords benzimidazole palladium (II) complexes in high yields. The structure of complexes C1, C2, and C3 has been confirmed by X-ray structure analysis. The configuration of complexes depends on the substituent on the 2-position of benzimidazole. Phenyl affords the complexes in cis-fashion due to π-π stacking of phenyl and benzimidazole. Tolyl affords the complex in trans-fashion. The catalytic studies show that cis-configured 2-phenylbenzimidazole palladium (II) complexes are highly efficient catalysts in the Suzuki-Miyaura reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号