首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binary surface interactions of some novel cationic diacyl glycerol arginine-based surfactants with model phospholipids, which are often used as model membrane components, are studied at 25 °C in aqueous solutions of 0.1 M sodium chloride. The surfactants are 1,2-dimyristoyl-rac-glycero-3-O-(Nα-acetyl-l-arginine) hydrochloride (1414RAc) and 1,2-dilauroyl-rac-glycero-3-O-(Nα-acetyl-l-arginine) hydrochloride (1212RAc), and they are important as potential antimicrobial agents which are biodegradable and with less toxicity than other cationic surfactants. The phospholipids are 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). The equilibrium and dynamic surface tension of each surfactant, each phospholipid, and some of their binary mixtures are studied using the bubble surfactometry method at constant area or pulsating area conditions. In addition, the surface densities of pure and mixed monolayers of these compounds at the air/water interface are probed with infrared reflection–absorption spectroscopy (IRRAS). Steady state and dynamic surface tension synergism, or antisynergism in one case, and synergistic adsorption effects are detected for the mixed dispersions studied. The enhanced adsorption detected with IRRAS, and the enhanced dynamic and steady state surface tension lowering indicate strong miscibility and net attractive interactions between the compounds in the adsorbed mixed monolayers.  相似文献   

2.
Two soft biocompatible cationic surfactants from the amino acid arginine, 1,2-dilauroyl-3-acetylarginyl-rac-glycerol (1212RAc) and 1,2-dimirystoyl-3-acetylarginyl-rac-glycerol (1414RAc), were prepared. Their physicochemical properties show that they can be classified as multifunctional surfactants with self-aggregation behaviour comparable to that of short-chain lecithins. The two surfactants can simultaneously stabilise water-in-oil (W/O) droplets and oil-in-water (O/W) droplets, forming multiple emulsions. They have antimicrobial activity similar to that of conventional cationic surfactants and are as harmless as amphoteric betaines. These surfactants constitute an interesting alternative to the diglycerides and lecithins in formulations that require antimicrobial properties.  相似文献   

3.
The mixed micelle formation in aqueous solutions between an anionic gemini surfactant derived from the amino acid cystine (C(8)Cys)(2), and the phospholipids 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, a micelle-forming phospholipid) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, a vesicle-forming phospholipid) has been studied by conductivity and the results compared with the ones obtained for the mixed systems with the single-chain surfactant derived from cysteine, C(8)Cys. Phospholipid-surfactant interactions were found to be synergistic in nature and dependent on the type of phospholipid and on surfactant hydrophobicity. Regular solution theory was used to analyse the gemini surfactant-DHPC binary mixtures and the interaction parameter, β(12), has been evaluated, as well as mixed micelle composition. The results have been interpreted in terms of the interplay between reduction of the electrostatic repulsions among the ionic head groups of the surfactants and steric hindrances arising from incorporation of the zwitterionic phospholipids in the mixed micelles.  相似文献   

4.
5.
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.  相似文献   

6.
The investigation of the characteristics of mixed floating monolayers of phospholipids and usnic acid (UA), an active metabolite from lichens, can provide valuable information on how to prepare stable liposomes that could serve as carriers of UA for therapeutic proposes. The present paper is concerned with the thermodynamic analysis of the behavior of Langmuir monolayers formed by mixing different phospholipids (dibehenoylphosphatidylcholine, DBPC, dipalmitoylphosphatidylcholine, DPPC, and dioleoylphosphatidylcholine, DOPC) and UA at varied molar fractions. Relevant thermodynamic parameters such as excess areas, excess free energies and free energy of mixing were derived from the surface pressure data obtained from compression measurements performed in a Langmuir trough. For the largest lateral pressure examined (25 mN/m), negative values of the excess free energy were found only for the DOPC/UA monolayer, which should be the most stable of them. Based on the calculated values of the free energy of mixing, we note that the DBPC/UA and DPPC/UA systems present the best mixed character at low pressures and when the molar fraction of the UA is 0.5; at that relative concentration and at low values of the external pressure, the UA molecules can better mix and interact with the phospholipid molecules. The compression isotherms for mixed monolayers show no visible transitions, exhibiting a more organized phase that corresponds to a negative free energy of mixing. We have established that the most stable monolayers were those corresponding to DOPC/UA mixtures with a UA molar fraction of 0.75.  相似文献   

7.
This study investigated the mixed monolayer behavior of dipalmitoyl phosphatidylcholine (DPPC) with normal long-chain alcohols at the air/water interface. Surface pressure–area isotherms of mixed DPPC/C18OH and DPPC/C20OH monolayers at 37°C were obtained and compared with previous results for the mixed DPPC/C16OH system. The negative deviations from additivity of the areas and the variation of the collapse pressure with composition imply that DPPC and long-chain alcohols were miscible and formed non-ideal monolayers at the interface. At lower surface pressures, it seems that the attractive intermolecular force was dominant in molecular packing in the mixed monolayers. At higher surface pressures, the data suggest that the molecular packing in mixed DPPC/C16OH monolayers may be favored by the packing efficiency or geometric accommodation. Furthermore, negative values of excess free energy of mixing were obtained and became significant as the hydrocarbon chain length of alcohols increased, which indicates there were attractive interactions between DPPC and long-chain alcohols. In each free energy of mixing–composition curve, there was only one minimum and thus a phase separation did not exist for mixed DPPC/long-chain alcohol monolayers.  相似文献   

8.
The microscopic thin wetting film method was used to study the stability of wetting films from aqueous solution of surfactants and phospholipid dispersions on a solid surface. In the case of tetradecyltrimethylammonium bromide (C(14)TAB) films the experimental data for the receding contact angle, film lifetime, surface potential at the vapor/solution and solution/silica interface were used to analyze the stability of the studied films. It is shown that with increasing C(14)TAB concentration charge reversal occurs at both (vapor/solution and solution/silica) interfaces, which affects the thin-film stability. The spontaneous rupture of the thin aqueous film was interpreted in terms of the earlier proposed heterocoagulation mechanism. The presence of the mixed cationic/anionic surfactants was found to lower contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants hetero-coagulation could arise through the formation of ionic surfactant complexes. The influence of the melting phase-transition temperature T(c) of the dimyristoylphosphatiddylcholine (DMPC) on the stability of thin films from dispersions of DMPC small unilamellar vesicles on a silica surface was studied by measuring the film lifetime and the TPC expansion rate. The stability of thin wetting films formed from dispersions of DMPC small unilamellar vesicles was investigated by the microinterferometric method. The formation of wetting films from diluted dispersions of DMPC multilamellar vesicles was studied in the temperature range 25-32 degrees C. The stability of thin film of lipid vesicles was explained on the basis of hydrophobic interactions. The results obtained show that the stability of wetting films from aqueous solutions of single cationic and mixed cationic-anionic surfactants has electrostatic origin, whereas the stability of the phospholipid film is due to hydrophobic interaction.  相似文献   

9.
Bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), specifically deuteriated at various positions of the sn-2-chain, have been studied by N.M.R. relaxation methods. Analysis of the experiments, employing a density matrix treatment based on the stochastic Liouville equation, provides new information about the dynamic organization of the different membrane phases (liquid-crystalline, intermediate and gel phases). The complex molecular dynamics are characterized by a super-position of inter- and intramolecular motions, comprising overall reorientation of phospholipid molecules and trans-gauche isomerization of individual chain segments. In addition, there is evidence for two-site rotational jumps of the sn-2-chains in the plane of the membrane. The results clearly demonstrate the particular advantage of N.M.R. relaxation studies in characterizing complex chemical and biological systems.  相似文献   

10.
The micellization of the binary mixed surfactants comprising of the Gemini surfactant N,N′-bis(dimethyldodecyl)-1,2-ethanediammonium dibromide and 1-dodecyl-3-methylimidazolium bromide has been studied by measurements of density. The apparent molar volumes were calculated for various surfactant concentrations and used to determine the critical micelle concentrations of the mixed surfactants at various compositions. An attractive effect was suggested by negative deviations of the experimental CMC values from the ideal ones. The Margules equation was applied to evaluate the micelle compositions, the activity coefficients of both components, and the excess molar Gibbs free energies of the mixed micelles. The stability of mixed micelles was shown to be enhanced as compared to those formed by single surfactants from the negative values of the excess Gibbs free energy. The comparison of the results obtained from the volumetric and ITC measurements indicated a reasonable good accordance with each other and confirmed the reliability of both methods for investigation on the properties of the mixed micelles.  相似文献   

11.
Compression beyond the collapse of phospholipid monolayers on a modified Langmuir trough has revealed the formation of stable multilayers at the air-water interface. Those systems are relevant new models for studying the properties of biological membranes and for understanding the nature of interactions between membranes and peptides or proteins. The collapse of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-l-serine] (DOPS), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-phosphocholine (DOPC), and 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-1-rac-glycerol] (DOPG) monolayers has been investigated by isotherm measurements, Brewster angle microscopy (BAM), and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). In the cases of DMPC and DOPS, the collapse of the monolayers revealed the formation of bilayer and trilayer structures, respectively. The DMPC bilayer stability has been analyzed also by a molecular dynamics study. The collapse of the DOPC and DOPG systems shows a different behavior, and the Brewster angle microscopy reveals the formation of luminous bundles, which can be interpreted as diving multilayers in the subphase.  相似文献   

12.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

13.
The film tension of bilayer Newton black films (NBF) from aqueous dispersions of dimyristoylphosphatidylcholine (DMPC) has been studied in dynamic conditions. The dynamic film tension values γ have been measured using the capillary method for direct measurement of the film tension. Two different solutions have been used: DMPC vesicle suspension in water obtained through sonication, denoted as ‘DMPC(Son)’ (the DMPC adsorption layers are insoluble monolayers) and DMPC dissolved in ethanol plus water mixed solvent, denoted as ‘DMPC(EthW)’ (the DMPC adsorption layers are soluble). Both solutions contain 0.1 M NaCl. The behavior of the dynamic film tension is different for NBF from the two types of solutions. In the case DMPC(Son) γ strongly depends on the film area, while in the case DMPC(EthW) this dependence is less pronounced but still exists. The dependence of the film tension on the film area in case DMPC(Son) is well described by the Frumkin equation modified for bilayer films. Reasonable values of the parameters of Frumkin equation are determined from its fit to the experimental data.  相似文献   

14.
Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.  相似文献   

15.
The kinetics of addition of fatty acids (as alkaline solutions of the fatty acid anions) to pre-existing unilamellar phospholipid vesicles (mean diameter 100 nm) has been studied. The phospholipid DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) has been mainly used, together with three fatty acids, oleic acid (cis-9-octadecenoic acid), linoleic acid (cis,cis-9,12-octadecadienoic acid) and capric acid (decanoic acid). Experiments were performed above as well as below the main phase transition temperature (Tm) of DMPC vesicles. The pH chosen to study the fatty acid vesicle interaction (after fatty acid and vesicle mixing) was 8.5 in the case of oleic acid and linoleic acid and 7.4 for capric acid. In the absence of any pre-existing phospholipid vesicles, the addition of alkaline solutions of the fatty acid anions to corresponding buffer solutions of pH 8.5 or 7.4 leads to a partial protonation of the fatty acid anions again resulting in the formation of fatty acid vesicles. This process is rather slow, taking place over a period of hours/days, and the vesicles formed are very polydisperse and include a range of vesicle sizes/shapes. However, in the presence of pre-existing phospholipid vesicles the added fatty acids equilibrate readily within a few minutes and the size of the vesicles that form are then closely related to the size of the originally present phospholipid vesicles; the vesicles formed being generally somewhat larger than the pre-existing vesicles. In the case of the phospholipid DMPC, the mixed fatty acid/phospholipid vesicle system is often formed rather rapidly (particularly above Tm), so that stopped-flow methods have been applied to follow the kinetics of the process. It is proposed that most of the fatty acid molecules are initially rapidly incorporated into the bilayers of the pre-exisiting phospholipid vesicles as monomers, rather than that the added fatty acids form separate fatty acid vesicles. The mean vesicle sizes formed in the systems investigated have been analysed by using dynamic light scattering measurements. The behaviour of the DMPC system was found to be slightly different from the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) system studied before, but the results are consistent with a model that involves growth and subsequent fission of the mixed vesicles. The study provides further support of the "matrix effect" in this type of system [S. Lonchin, P.L. Luisi, P. Walde, B.H. Robinson, J. Phys. Chem. B 103 (1999) 10910-10916]. The pre-existing DMPC vesicles act as a kind of seed to control the behavior of the system in the presence of added fatty acid anions.  相似文献   

16.
The interaction of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphocoline (POPC) and 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), two of the major components in biological membranes, were investigated using the monolayer technique at the air–water interface. The pressure–area isotherms indicate that both phospholipids are miscible through all range of compositions. POPE–POPC form stable mixtures, with a minimum for the Gibbs energy of mixing at XPOPC = 0.4. A virial equation of state was fitted to the experimental values. Positive values found for the second virial coefficient indicate repulsion between POPC and POPE. The interaction parameter was evaluated which indicated that a corresponding decrease in the repulsion occurs when POPC molar fraction is low. This effect suggests the existence of hydrogen bonds between POPE and the water beneath the interface.  相似文献   

17.
The stabilizing or disturbing effect of different surfactants on the bicellar phase of phospholipids significantly depends on their type. The effect of different surfactants on the bicellar structure made of a mixture of phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dihexanoyl-sn-glycero-3-phospho-choline (DMPC/DHPC) has been studied by the small angle scattering of synchrotron radiation. The study has been performed for three surfactants: dodecyldimethyl-(hexyloxymethyl)ammonium chloride, n-undecylammonium chloride and t-octylphenoxypolyethoxyethanol (Triton X-100) introduced into a bicellar solution of DMPC/DHPC (2.8:1). The bicellar phase has been disturbed in the shortest time in the presence of dodecyldimethyl-(hexyloxymethyl)ammonium chloride in this system a transition from the bicellar to lamellar structure has been directly visible. The changes have been less pronounced in the presence of undecylammonium chloride and practically not noted in the presence of Triton X-100.  相似文献   

18.
Griseofulvin (GF) is an oral antibiotic for widely occurring superficial mycosis in man and animals caused by dermaphyte fungi; it is also used in agriculture as a fungicide. The mechanism of the biological activity of GF is poorly understood. Here, the interactions of griseofulvin with lipid membranes were studied using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-myristoyl-sn-glycero-3-phosphoethanolamine (DMPE) monolayers spread at the air/water interface. Surface pressure (Pi), electric surface potential (Delta V), grazing incidence X-ray diffraction (GIXD), and Brewster angle microscopy (BAM) were used for studying pure phospholipid monolayers spread on GF aqueous solutions, as well as mixed phospholipid/GF monolayers spread on pure water subphase. Moreover, phospholipase A2 (PLA2) activity toward DLPC monolayers and molecular modeling of the GF surface and lipophilic properties were used to get more insight into the mechanisms of GF-membrane interactions. The results obtained show that GF has a meaningful impact on the film properties; we propose that nonpolar interactions are by and large responsible for GF retention in the monolayers. The modification of membrane properties can be detected using both physicochemical and enzymatic methods. The results obtained may be relevant for elaborating GF preparations with increased bioavailability.  相似文献   

19.
季铵盐型双子表面活性剂与十八醇的混合单分子膜   总被引:1,自引:0,他引:1  
研究了双子表面活性剂12-2-16和12-2-12分别与十八醇(C18H37OH)在空气-水界面上混合单分子膜的π-A等温线. 在相分离表面压以下, 比较了不同表面压下和不同混合比单分子膜的混合表面过剩自由能ΔGMexo, 分析了双子表面活性剂与脂肪醇在空气-水界面上混合膜中的相容性. 结果表明, 12-2-16与C18H37OH在所有混合摩尔比下随着表面压增高, 自由能增大. 12-2-12与C18H37OH混合膜体系的相容性取决于两者的混合比, ΔGMexo随所加入C18H37OH摩尔分数的增加逐渐增大, 从异种分子间净的吸引作用转变到相互排斥作用体系, 转变点为C18H37OH加入量的摩尔分数0.65. 当混合为热力学自发过程时, 增大表面压将有利于混合; 而对相互排斥体系, 增加表面压将使体系内异种分子之间的相互排斥作用更大.  相似文献   

20.
The dynamic adsorption and penetration of human serum albumin (HSA) into the monolayers of five biologically important surfactants—DSPC, DPPC, DMPC, DMPE and DMPA—were systematically studied using Brewster angle microscopy, film balance and pendent drop techniques. Isotherms after different adsorption times show that the presence of HSA changed the monolayer phase behavior (e.g. the shifts of the LE→LC phase transition in the mixed phospholipid/HSA monolayers). Apparent inhomogeneous phases—‘honey-comb’ (J. Mol. Liq., 2001, 90, 149), ‘block’ or ‘stripe’ shape phases are formed due to the adsorption and penetration of HSA into these phospholipid monolayers at the air/water interface. Both the phase behavior changes and the morphological changes were confirmed by our recent structure studies in DPPA/HSA and DPPS/HSA monolayers using X-ray diffraction at grazing incidence, which directly shows that HSA penetration can change the tilt angle of phospholipids. It was found that the adsorption and penetration of HSA strongly depends on the phospholipid head-group structure and the physical state of the phospholipid films. The latter played a dominant role by providing enough space for the penetration of HSA and affecting the hydrophobic interactions of HSA with the aliphatic chains of phospholipids in monolayers at the air/water interface. In general, HSA penetrates more efficiently and quickly into monolayers of phospholipids in liquid state (e.g. DMPC compared to DSPC) and with unprotected charges (e.g. PA compared to PE and PC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号