首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorption of proteins at surfaces and interfaces is important in a wide range of industries. Understanding and controlling the conformation of adsorbed proteins at surfaces is critical to stability and function in many technological applications including foods and biomedical testing kits or sensors. Studying adsorbed protein conformation is difficult experimentally and so over the past few decades researchers have turned to computer simulation methods to give information at the atomic level on this important area. In this review we summarize some of the significant simulation work over the past four years at both fluid (liquid–liquid and gas–liquid interfaces) and solid–liquid interfaces. Of particular significance is the work on surfactant proteins such as fungal hydrophobins, ranspumin-2 from the túngara frog and the bacteria protein BslA. These have evolved unique structures impart very high surface-active properties to the molecules. A highlight is the elucidation of the clam-shell unhinging mechanism of ranspumin-2 adsorption to the gas–liquid interface that is responsible for its adsorption to and stabilization of the air bubbles in túngara frog foam nests.  相似文献   

2.
3.
A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid–liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors.  相似文献   

4.
A novel technique called miniaturized homogeneous liquid–liquid extraction (MHLLE) followed by high performance liquid chromatographic-fluorescence detection (HPLC-FL) was developed for the extraction and determination of some polycyclic aromatic hydrocarbons (PAHs) as model for analytical problem in sediment samples. The method is based on the rapid extraction of PAHs from a methanolic sample solution into 0.5 mL n-hexane, as a solvent of lower density than water. After addition of water, the extracting solvent immediately forms a distinct water-immiscible phase at the top of the vial, which can be easily separated, evaporated and re-dissolved in 25 μL of methanol and injected to the HPLC instrument. The parameters affecting the extraction process such as type and volume of organic extraction solvent, extraction time, and salt addition were investigated and the partition coefficient between methanol/water–n-hexane phases was evaluated and used to predict the extraction efficiency. Under optimal conditions, the limits of detection were estimated for the individual PAHs as 3Sb (three times of the standard deviation of baseline) of the measured chromatogram, are in the range of 0.003–0.04 ng g−1 for sediment samples. The relative recoveries of PAHs at spiking levels of 1.0 ng g−1 for sediment samples were in the range of 81–92%. The method was also applied to a corresponding standard references materials (IAEA-408) successfully. The proposed method is very fast, simple, and sensitive without any need for stirring and centrifugation.  相似文献   

5.
A novel arrangement for microporous membrane liquid–liquid extraction from the aqueous donor phase to the organic acceptor phase within a micro-vial, which is compatible with the chromatograph autosampler is presented. The device consisted of a stoppered glass micro-vial containing the organic solvent where the septum of the screw stopper was replaced by a sized piece of membrane which is hermetically assembled to the volumetric flask containing the aqueous donor solution. The placement of the membrane in alternative contact with the solutions was achieved by orbital agitation. As a preliminary study, 2-ethylhexyl 4-(dimethylamino)benzoate has been determined (limit of quantification 0.11 μg L−1, precision 7.4%). The small quantity of organic solvent used, the achieved sample cleanup, and the minimal handling and risk of cross-contamination are significant operational advantages.  相似文献   

6.
《Fluid Phase Equilibria》2004,216(1):175-182
An automated apparatus developed for the determination of liquid–liquid and solid–liquid equilibrium temperatures with a resolution of 1 mK and a traceable accuracy of 0.01 K is described. The amount of light transmitted through six sample cells placed in a computer controlled thermostat is recorded at heating or cooling rates from 0.075 to 15 K h−1. The construction does not require expensive optic equipment like lasers, glass fibre optics or photomultipliers, but is based on light emitting diodes (LED) as light sources and light dependent resistors (LDR) or photodiodes as detectors. As shown by the discussed examples, the instrument has a wide range of possible applications from the investigation of simple one-component and binary systems to the study of the complicated phase behavior of surfactant solutions.  相似文献   

7.
For the first time, the use of a magnetic stirrer within the syringe of an automated syringe pump and the resulting possible analytical applications are described. A simple instrumentation following roughly the one from sequential injection analyzer systems is used in combination with an adaptor, which is placed onto the barrel of a glass syringe. Swirling around the longitudinal axis of the syringe and holding two strong neodymium magnets, it causes a rotating magnetic field and serves as driver for a magnetic stirring bar placed inside of the syringe.  相似文献   

8.
A facile and efficient method for the formylation of Grignard reagent was reported, and a new approach for the preparation of aldehydes from Grignard reagent and benzimida-zolium salts was provided.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

10.
Ribonucleosides are the end products of RNA metabolism. These metabolites, especially the modified ribonucleosides, have been extensively evaluated as cancer-related biomarkers. However, the determination of urinary ribonucleosides is still a challenge due to their low abundance, high polarity and serious matrix interferences in urine samples. In this study, a derivatization method based on a chemical reaction between ribonucleosides and acetone to form acetonides was developed for the determination of urinary ribonucleosides. The derivative products, acetonides, were detected by using liquid chromatography–tandem mass spectrometry (LC–MS/MS). The methodological evaluation was performed by quantifying four nucleosides for linear range, average recovery, precision, accuracy and stability. The validated procedures were applied to screen modified ribonucleosides in urine samples. Improvement of separation and enhancement of sensitivity were obtained in the analysis. To identify ribonucleosides, inexpensive isotope labeling acetone (acetone-d6) and label-free acetone were applied to form ordinary and deuterated acetonides, respectively. The two groups of samples were separated with orthogonal partial least squares (OPLS). The ordinary and deuterated pairs of acetonides were symmetrically distributed in the S-plot for easy and visual signal identification. After structural confirmation, a total of 56 ribonucleosides were detected, 52 of which were modified ribonucleosides. The application of derivatization, deuterium-labeling and multivariate statistical analysis offers a new option for selective detection of ribonucleosides in biological samples.  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - The decomposition onset temperature, Tdecom, is an important parameter for investigating the thermal stability of chemicals. A novel method is...  相似文献   

12.
Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid–liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid–liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.  相似文献   

13.
On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 produc- tion and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase re- forming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic com- pounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hy- drocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the se- lectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a po- tential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hy- drogenation and increase the energy usage and hydrogen productivity.  相似文献   

14.
Mizoroki–Heck reaction is carried out in a novel hydrophobic fluorous ionic liquid which was catalyzed by Pd-nanoparticles formed in situ from Pd(OAc)2 used in the reaction. This reaction is operable under mild, aerobic, and ligand-free conditions in excellent yields. Aryl iodides, bromides as well as chlorides can be used showing its versatility. The key feature of the system is that catalyst along with ionic liquid can be reused at least five times with superior activity.  相似文献   

15.
A novel derivatization-ultrasonic assisted-dispersive liquid–liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06–0.90 μg mL−1 and 0.9987–0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.  相似文献   

16.
17.
It is well accepted that the morphology of the nanomaterials has great effect on the properties and hence their applications. Therefore, morphology of materials has become a focus of research in the scientific world. The present study shows that interfacial polymerization and subsequent self-assembly provides a control over the morphology, nanorod/nanosheet, of polyaniline (PANI) films synthesized by liquid–liquid interface reaction technique and solid–liquid interface reaction technique. The synthesized PANI films and its particulate structure are characterized by using various spectroscopic techniques such as UV–visible, ATR-IR, Raman and XPS. The study confirmed the formation, the structure, the size and shape of particles and morphology of PANI by using analytical techniques namely, SAED, SEM and TEM. An important observation is that doping with HCl significantly improves the nanorod formation at the interface. The doped PANI electrode exhibits a higher area with rectangular shape in CV cycle and better cycle stability when compared with the performance of undoped PANI films. We believe that the results of these studies can give valuable leads to manoeuvre formation of PANI films with desired morphology for various applications.
Figure
Time and temperature-dependent morphology of PANI layer leading to the formation of one/two-dimensional structures namely, PANI rods/sheets, is achieved by monitoring of self-assembly of nano particulate film formed at liquid–liquid/solid–liquid interfaces  相似文献   

18.
The sensitivities of infrared spectra of thin adsorbate layers measured in either transmission, internal reflection or external reflection can be greatly increased if a light incidence medium with a high refractive index such as an IR-transparent solid material is used. This increase in sensitivity is due to the strong enhancement of the perpendicular electric field in a thin layer of low refractive index sandwiched between two high refractive index materials. Based on model calculations of a hypothetical sample layer, the influence and optimization of experimental parameters such as incidence angle, sample layer thickness and optical contact between layers are investigated. Under optimized conditions, this enhancement can exceed a factor of 100 when compared to conventional surface IR techniques. In addition, the spectra of sandwiched sample layers are governed by a uniform surface selection rule, such that only the perpendicular vibrational components are enhanced, and they permit a straightforward, substrate-independent analysis of surface orientations. Experimental examples of monolayer spectra of long-chain hydrocarbon compounds adsorbed onto gold and silicon substrates and contacted with a germanium crystal used as the incidence medium demonstrate the simple experimental realization and unprecedented sensitivity of this sandwich technique, and they offer novel insights into the chemistry and structure of monolayers confined and compressed between two solid surfaces. Figure IR reflection spectrum of a monolayer of a fatty acid methyl ester sandwiched between silicon and germanium.  相似文献   

19.
An in-vial liquid–liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1–119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d. × 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25 °C, injection time of 4 s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号