首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size fractionate particles in a moving air stream is described. Separate particle-laden and clean air streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles cause them to move transverse to the flow direction. Since the radiation force is dependent upon the particle size, larger particles move a greater transverse distance as they pass through the standing wave. The outlet flow is then separated into streams, each containing a range of particle sizes. Experiments were performed with air streams containing glass microspheres with a size distribution from 2-22 μm, using a centerline air stream velocity of approximately 20 cm/s. An electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the outlet were compared with the predictions of a theoretical model. Experiments and theory show reasonable correspondence. The theoretical model also indicates an optimal partitioning of the particle-laden and clean air inlet streams.  相似文献   

2.
In cold spray process, impacting velocity and critical velocity of particles dominate the deposition process and coating properties for given materials. The impacting velocity and critical velocity of particles depend on the powder properties and cold spray conditions. In the present study, the in-flight particle velocity of copper powder in low pressure cold spraying was measured using an imaging technique. The effects of particle size and particle morphology on in-flight particle velocity and deposition efficiency were investigated. The critical velocity of copper powder was estimated by combining the in-flight particle velocity and deposition efficiency. The effect of annealing of feedstock powder on deposition and critical velocity was also investigated. The results showed that the irregular shape particle presents higher in-flight velocity than the spherical shape particle under the same condition. For irregular shape particles, the in-flight velocity decreased from 390 to 282 m/s as the particle size increases from 20 to 60 μm. Critical velocities of about 425 m/s and more than 550 m/s were estimated for the feedstock copper powder with spherical and irregular shape morphology, respectively. For the irregular shape particles, the critical velocity decreased from more than 550 to 460 m/s after preheating at 390 °C for 1 h. It was also found that the larger size powder presents a lower critical velocity in this study.  相似文献   

3.
In the present work, nano-calcium carbonate powder was prepared by micropore dispersion method with assistance of oleic acid as surfactant. CO2 gas was dispersed into the Ca(OH)2/H2O slurry via a glass micropore-plate with the diameter of micropore about 20 μm. To investigate the effect of oleic acid on the size of CaCO3 particles, different amount of oleic acid was added in Ca(OH)2/H2O slurry at 5 °C and 25 °C, respectively. XRD patterns show that cubic calcite is the only crystalline phase in all cases. ZPA data and TEM photo indicate that the average particle size synthesized at 5 °C without oleic acid is of about 40 nm, slightly smaller than that of prepared at 25 °C, and that the dispersity of sample prepared at 5 °C is better than that of 25 °C. When oleic acid is added in both temperatures, the average particle size decreases a little. FT-IR spectra demonstrate that oleic acid interacts with Ca2+ and carbon-carbon double bond existed on the surface of particle. Consequently, two opposite roles of oleic acid during the process of preparation of nano-CaCO3 were proposed, namely preventing nanoparticles from growing during reaction and making nanoparticles reunite to a certain extent after reaction.  相似文献   

4.
Xing Fan 《Applied Surface Science》2009,255(12):6297-6302
Particles generated by 2.94 μm pulsed IR laser ablation of liquid 3-nitrobenzyl alcohol were irradiated with a 351 nm UV laser 3.5 mm above and parallel to the sample target. The size and concentration of the ablated particles were measured with a light scattering particle sizer. The application of the UV laser resulted in a reduction in the average particle size by one-half and an increase in the total particle concentration by a factor of nine. The optimum delay between the IR and UV lasers was between 16 and 26 μs and was dependent on the fluence of the IR laser: higher fluence led to a more rapid appearance of particulate. The ejection velocity of the particle plume, as determined by the delay time corresponding to the maximum two-laser particle concentration signal, was 130 m/s at 1600 J/m2 IR laser fluence and increased to 220 m/s at 2700 J/m2. The emission of particles extended for several ms. The observations are consistent with a rapid phase change and emission of particulate, followed by an extended emission of particles ablated from the target surface.  相似文献   

5.
This paper describes the fabrication of CoFe2O4 thick films using the tape casting method from nonaqueous slurry. CoFe2O4 particles with average size of ∼800 nm were prepared by the solid-state reaction method. Sediment volumes and viscosity were tested to study the effects of dispersant in reducing aggregations in slurry. Slurry with 0.25 wt% dispersant amounts and 41.3 wt% solid content showed the optimal stability and rheological properties. A tape velocity of 8 cm/s was used in this study considering the non-Newtonian flow behavior at low shear rate. CoFe2O4 ceramic films sintered at 1150 °C for 2 h have dense structure (relative density of 94%) and exhibited ferromagnetic properties with in-plane saturation magnetization of ∼324 emu/cm3.  相似文献   

6.
Nanometer-scale Al particles are fabricated and are embedded in a GaAs matrix using molecular beam epitaxial technique. The Al particle is self-assembled on GaAs by supplying an Al molecular beam. The average particle size is found to be 25 nm. The density is 7 × 1010 cm−2 when Al of 6.2 × 1015 atoms/cm2 is supplied on (1 0 0)GaAs at a substrate temperature of 300 °C. Clear hysteresis and plateaus in capacitance-voltage (C-V) curves are found in an Al-embedded sample, whereas monotonic increase of capacitance is obtained in a reference sample having an AlAs layer instead of Al. This difference results from trapping of electrons by the Al particles, suggesting that the particles have metallic character.  相似文献   

7.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

8.
Pt, Ru and Pt/Ru nano-particles, synthesized in ethylene glycol solutions, are studied using infrared (IR) spectroscopy and high resolution transmission electron microscopy (HRTEM). The synthesis method allows the control of the mono- and bi-metallic catalyst particle sizes between 1 and 5.5 nm. The IR spectra of CO adsorbed (COads) on the Pt, Ru and bi-metallic Pt/Ru colloids are recorded as a function of the particle size. The stretching frequency of COads depends on the particle size and composition. Strong IR bands due to the stretching vibration of COads are observed between 2010 and 2050 cm−1 for the Pt nano-particles, while two IR bands between 2030 and 2060 cm−1 for linear bonded COads, and at lower wavenumbers between 1950 and 1980 cm−1 for bridged bonded COads, are found for the Ru particles. The IR spectra for the Pt/Ru nano-sized catalyst particles show complex behaviour. For the larger particles (>2 ± 0.5 nm), two IR bands representative of COads on Ru and Pt-Ru alloy phases, are observed in the range of 1970-2050 cm−1. A decrease in the particle size results in the appearance of a third band at ∼2020 cm−1, indicative of COads on Pt. The relative intensity of the band for COads on the Pt-Ru alloy vs. the Pt phase decreases with decreasing particle size. These results suggest that Ru is partially dissolved in the Pt lattice for the larger Pt/Ru nano-particles and that a separate Ru phase is also present. A Pt-Ru alloy and Ru phase is observed for all Pt/Ru particles prepared in this work. However, a decrease in particle size results in a decrease of the number of Pt and Ru atoms in the Pt-Ru alloy phase, as they are increasingly present as single Pt and Ru phases.  相似文献   

9.
In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).  相似文献   

10.
CaSO4:Eu with particle size in submicron range was synthesized. Radiation induced Eu3+↔Eu2+ conversion as well as thermal conversion was studied. The samples showed thermal conversion above 400 °C. However, no radiation induced conversion in submicron range particles was observed. Particles heated above 400 °C coalesce and when heated at 925 °C bigger particles of 20 μm size were formed. Optical microscopy of these particles reveals red inclusion of about 5 μm inside CaSO4 particle. It is speculated that the red inclusion is CaS:Eu2+.  相似文献   

11.
Nano-sized antimony-doped tin oxide (ATO) particles were synthesized using DC arc plasma jet. The precursors SnCl4 and SbCl5 were injected into the plasma flame in the vapor phase. ATO powder could conveniently be synthesized without any other post-treatment in this study. To control the doping amount of antimony in the ATO particles, the Sb/Sn molar ratio was used as an operating variable. To study the effect of carrier gas on the particle size, argon and oxygen gases were used. The results of XRD and TGA show that all Sb ions penetrated the SnO2 lattice to substitute Sn ions. With the increased SbCl5 concentration in source material, the Sb doping level was also increased. The size of the particles synthesized using the argon carrier gas was much smaller than that of the particles prepared using the oxygen carrier gas. For the argon gas, PSA results and SEM images reveal that the average particle size was 19 nm. However, for the oxygen gas, the average particle size was 31 nm.  相似文献   

12.
We investigate the viscosity behavior of a magnetic suspension in which magnetic particles are dispersed in a mixture of polyacrylic liquids. The size of magnetite particles is nearly 300 nm and the volume fraction of the magnetic particles is in the range of 0.003-0.03. The particle concentration dependence of the suspension viscosity yields the intrinsic viscosity [η], which varies from 25.6 at 5 s−1 to 5.1 at 400 s−1. The yield stress and the infinite shear viscosity of the suspension increase non-linearly as the particle concentration ? increases. We examine the effect of process conditions such as milling time and amount of dispersant on the viscosity behavior of the suspension. As milling time elapses, yield stress and low shear viscosity decrease and then reach constant values while the infinite shear viscosity remains constant. When oleic acid is added as a dispersant, the yield stress and low shear viscosity of the suspension show minimum values as the amount of oleic acid increases. These results agree with experimental results of sedimentation tests, which enable us to estimate the aggregate size of magnetic suspension. The yield stress and the low shear viscosity of the magnetic suspension are found to be useful in evaluating the dispersion state of the magnetic suspension.  相似文献   

13.
Magnetic microspheres, with mean particle sizes from 23 to 32 μm were produced by the ultrasonic atomisation of a suspension of magnetite particles, of approximately 200 nm diameter, in a solution of poly–l–lactic acid (PLLA). The mean particle diameter and the width of the particle diameter distribution both increased with increasing magnetite concentration. The particles appear to be suitable for magnetic hyperthermic treatment of liver cancers, with the hysteresis loop areas increasing linearly with nominal magnetite concentration up to 30 wt% magnetite.  相似文献   

14.
This paper reports the deposition of ZnO nanoparticles with controlled sizes and different particle densities and their structural, composition and optical properties. They were deposited by means of a DC magnetron based vacuum nanoparticle source onto different substrates (GaAs, Si and Ti/SiO2/Si). We believe that this is the first time that such nanoparticles have been produced using this unique technique. Zinc was used as sputtering target to produce zinc nanoparticles which were oxidized in-line using molecular oxygen. The structural properties and chemistry of the ZnO were studied by transmission electron microscopy. An average particle size of 6(±2) nm was produced with uniform size distribution. The particle density was controlled using a quartz crystal monitor. Surface densities of 2.3 × 1011/cm2, 1.1 × 1013/cm2 and 3.9 × 1013/cm2 were measured for three different deposition runs. The ZnO particles were found to be single crystalline having hexagonal structure. Photoluminescence measurements of all samples were performed at room temperature using a cw He-Cd laser at 325 nm excitation. The UV emission around 375 nm at room temperature is due to excitonic recombination and the broad emission centered at 520 nm may be attributed to intrinsic point defects such as oxygen interstitials.  相似文献   

15.
The particle mass loading effect on the flow structure of a two-phase turbulent jet flow was studied. A particle mass loading ratio ranging from 0 to 3.6 was used as the control parameter. The polystyrene solid particles used had nominal diameters of 210 and 780 μm. The flow Reynolds number, which was based on the pipe nozzle diameter and the fluid-phase centerline mean velocity, was 2 × 104 in the current test. A two-color laser Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed to measure the mean velocity distributions for the particle and fluid phases, and the turbulent intensities and Reynolds stresses of the flow. The two-phase jet flow field was measured from the initial pipe exit to 90 D downstream. Another one-component He? Ne laser LDA system was also applied to obtain the energy spectra and temporal correlations of the two-phase jet flow.  相似文献   

16.
This work describes the design and application of an apparatus to image aerosol particles using digital holography in a flow-through, contact-free manner. Particles in an aerosol stream are illuminated by a triggered, pulsed laser and the pattern produced by the interference of this light with that scattered by the particles is recorded by a digital camera. The recorded pattern constitutes a digital hologram from which an image of the particles is computationally reconstructed using a fast Fourier transform. This imaging is validated using a cluster of ragweed pollen particles. Examples involving mineral-dust aerosols demonstrate the technique's in situ imaging capability for complex-shaped particles over a size range of roughly 15-500 μm micrometers. The focusing-like character of the reconstruction process is demonstrated using a NaCl aerosol particle and is compared to a similar particle imaged with a conventional microscope.  相似文献   

17.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

18.
We investigated the properties of metallic cobalt particles which were prepared by metal organic synthesis. By X-ray diffraction we identified the FCC Co phase and obtained a particle size of 6 nm. VSM measurements revealed a specific magnetization of 77.5 Am2/kg which is 46% of the bulk value. From the analysis of the magnetization curve the parameters of the particle size distribution were estimated. In order to assess the suitability of the material for heating applications AC susceptometry as well as calorimetrical measurements of the specific loss power at 400 kHz and 13–25 kA/m were performed. We obtained values from 500 to 1300 W/g.  相似文献   

19.
A method of rapid particle concentration in a droplet has been developed using surface acoustic wave (SAW) technology. A droplet was partially placed on a surface acoustic wave propagation path, and particles were concentrated at the center of the droplet due to the asymmetry. The device consists of two IDTs and two reflectors. The one IDT is used for generating SAW and the opposite IDT is used for detecting output voltage signal amplitude, and then for calculating acoustic power density of a droplet. To investigate concentration effect of the device, starch suspension and rabbit blood cells were used in this paper. Different acoustic power density was applied ranging from 6.13 mw mm−2 to 210.9 mw mm−2. The concentration process occurs within 15 s under appropriate acoustic power density put on the droplet, which is much faster than currently available particle concentration mechanisms, and the method is also efficient, which concentrating the particles into an aggregate about one-fifth the size of the original droplet. Additional, the concentration process is no damage to bioparticles. This concentration method can improve greatly SAW biosensor system sensitivity.  相似文献   

20.
Ni80Fe20 permalloy nanoparticles (NPs) have been prepared by the polyol processing at 180 °C for 2 h and their particle sizes can be precisely controlled in the size range of 20-440 nm by proper addition of K2PtCl4 agent. X-ray diffraction results show that the Ni-Fe NPs are of FCC structure, and a homogeneous composition and a narrow size distribution of these NPs have been confirmed by scanning electron microscopy assisted with energy dispersion spectroscopy of X-ray (SEM-EDX). The saturation magnetization of ~440nm NPs is 80.8 emu/g that is comparable to that of bulk Ni80Fe20 alloys, but it decreases to 28.7 emu/g for ~20 nm NPs. The coercive force decreases from 90 to 3 Oe with decreasing NP size. The wide range of particle size is exploited to seek for high permeability composite particles. The planar type samples composed of the NiFe NPs exhibit low initial permeability due to the deteriorated magnetic softness and low packing density. However, when they are mixed with Fe micron particles, the initial permeability significantly increases depending on the mixing ratio and the NiFe NP size. A maximum initial permeability is achieved to be ~9.1 at 1 GHz for the Fe-10 vol%NiFe (~20 nmΦ), which is about three times that of pure Fe micron particles. The effects of Ni-Fe particle size, volume percentage and solvent on the static and dynamic permeability are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号