首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species.The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination.Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.  相似文献   

2.
Herzog G  Arrigan DW 《The Analyst》2007,132(7):615-632
Electrochemical methods for the detection of amino acids, peptides, and proteins in a variety of media are reviewed. Label-free strategies in which the detection is based on the inherent electrochemical properties of the analyte are discussed. Various processes such as direct or mediated (in solution or immobilised) redox processes and interfacial ion transfers have been employed for the electrochemical detection and determination of the target analytes. The various methods covered encompass voltammetry at uncoated and modified electrodes and at immiscible liquid-liquid interfaces, potentiometry at polymer membrane electrodes and electrochemical impedance spectroscopy. The determination of the target analytes in complex biological matrices is discussed. The various approaches highlighted here illustrate the rich capabilities of electrochemical methods as simple, low-cost, sensitive tools for the determination of these important biological analytes at trace and ultra-trace levels.  相似文献   

3.
Jin JH  Kim JH  Lee JY  Min NK 《The Analyst》2011,136(9):1910-1915
A single walled carbon nanotube (SWCNT)-based three-electrode system was fully integrated on glass substrates using a standard microfabrication process and electrochemically characterized using cyclic voltammetry. O(2) plasma functionalization of the SWCNT film working electrode for achieving high sensitivity was voltammetrically optimized with respect to the plasma power and treatment time. Chlorination of a Ag thin-film was done in an acidic solution for different dip times to form a thin-film Ag/AgCl reference electrode. The Nernstian behavior of as-prepared and seven-day-aged Ag/AgCl thin-film electrodes was investigated for seeking the optimum reference electrode with long-term stability and was compared to a commercial reference electrode. A quality control evaluation and a performance assessment of the fully integrated SWCNT-transferred sensing systems were performed using cyclic voltammetry. The proposed SWCNT-based three electrode device exhibited clear electrochemistry under voltammetric conditions, and is therefore a candidate for use in all electrochemical biosensors.  相似文献   

4.
Electrodes modified by liquid films or plasticized polymeric membranes containing a redox species offer valuable alternatives for the study of ion transfers and bimolecular electron transfers at liquid–liquid interfaces with conventional electrode arrangements and stable interfaces. The ion-to-electron (or electron-to-electron) transducer affects the electrochemical signal, complicating the accurate analysis of experimental data. This can be reduced through the use of an electrode surface-attached redox species of well-defined electrochemical behaviour. As will be demonstrated, the voltammetry of these systems show significant deviations with respect to individual charge transfers, which must be considered for appropriate diagnosis and quantitative analysis. For this, a simple analytical theory is presented here, deducing mathematical expressions for the current–potential response, as well as for the potential difference at the two polarized interfaces, the surface excess of the redox species and the ion interfacial concentrations.  相似文献   

5.
Vuki M  Shiu KK  Galik M  O'Mahony AM  Wang J 《The Analyst》2012,137(14):3265-3270
The simultaneous electrochemical measurement of heavy-metal and organic propellants relevant to gunshot residues (GSRs) is demonstrated. Cyclic voltammetry (CV) and cyclic square-wave stripping voltammetry (C-SWV) are shown to detect, in a single run, common propellants, such as nitroglycerin (NG) and dinitrotoluene (DNT), along with the heavy metal constituents of GSR, antimony (Sb), lead (Pb), zinc (Zn) and barium (Ba). The voltammetric detection of the stabilizer diphenylamine (DPA) along with inorganic constituents has also been examined. The resulting electrochemical signatures combine -in a single voltammogram- the response for the various metals and organic species, based on the reduction and oxidation peaks of the constituents. Cyclic square-wave voltammetry at the glassy carbon electrode (GCE), involving an intermittent accumulation at the reversal potentials of -0.95 V (for Sb, Pb, DNT and NG) and -1.3 V (for Sb, Pb, Zn and DPA) is particularly useful to offer distinct electrochemical signatures for these constituents of GSR mixtures, compared to analogous cyclic voltammetric measurements. Simultaneous voltammetric measurements of barium (at thin-film Hg GCE) and DNT (at bare GCE) are also demonstrated in connection to intermittent accumulation at the reversal potential of -2.4 V. Such generation of unique, single-run, information-rich inorganic/organic electrochemical fingerprints holds considerable promise for 'on-the-spot' field identification of individuals firing a weapon, as desired for diverse forensic investigations.  相似文献   

6.
The equation of the linear potential sweep voltammogram is derived for any degree of reversibility of the electrochemical reaction for the following methods: surface voltammetry when both the oxidized and the reduced forms are strongly adsorbed, and a Langmuir isotherm is obeyed, thin layer voltammetry, and linear potential sweep coulometry. The results are expressed in one mathematical form valid for the three cases. The transfer coefficient and the rate constant of the electrochemical reaction can be deduced from an experimental study of the variations of the peak potentials as a function of the sweep rate.  相似文献   

7.
采用离子束多靶溅射技术控制膜层结构制备出二维多层PtRu/PtNd纳米合金薄膜作为微型直接甲醇燃料电池(DMFCs)阳极催化电极材料. 应用X射线光电子能谱(XPS)、原子力显微镜(AFM)、X射线衍射(XRD)、掠入射X射线衍射(GIXD)研究了薄膜表面的化学状态、形貌以及薄膜表层、次表层和体相的结构,并用CO-stripping伏安法、循环伏安法(CV)、线性扫描伏安法(LSV)、计时电流法(CA)等电化学方法测试薄膜催化剂的电化学活性比表面积及其对甲醇的电催化氧化. 结果表明, 多次交替沉积制备的PtRu/PtNd薄膜, 由于溅射产生的Pt+、Ru+和Pt+、Nd+之间的相互作用, 使薄膜表面的化学状态和膜层结构发生变化, 其衍射谱峰呈现异常宽化, Pt与Nd之间产生电子转移, 证实了PtRu/PtNd纳米合金薄膜是一种具有特殊膜层结构和电子结构的二维多层PtRu/PtNd纳米合金薄膜, 电化学活性比表面积高达115.00m2 ·g-1, 在酸性溶液中电催化氧化甲醇的活性显著提高.  相似文献   

8.
采用脉冲激光沉积法在不锈钢基片上制备了LiF-Ni纳米复合薄膜, 用充放电和循环伏安实验测量了该薄膜的电化学性能. 首次充电容量为107 mAh•g−1, 它对应第一次释放锂的过程. 在充放电循环过程中, 锂的嵌入、脱出通过非原位高分辨电子显微和选区电子衍射得到证实. 这一结果为LiF可以由过渡金属Ni驱动分解提供了直接的实验证据.  相似文献   

9.
Liu S  Li Q  Shao Y 《Chemical Society reviews》2011,40(5):2236-2253
In this tutorial review, we will briefly introduce the history and basic concepts of micro- and nanoscopic liquid/liquid interfaces (size from nm to μm) in electrochemical studies of charge (electron and ion) transfer reactions at soft molecular interfaces. Their advantages and problems are usually compared with those of conventional liquid/liquid interfaces (size from mm to cm); and with solid/electrolyte interfaces. Three methods of fabrication of micro-liquid/liquid interfaces and one approach to support a nano-liquid/liquid interface are surveyed. The experimental and theoretical aspects are discussed along with possible approaches to characterize these micro- and nanoscopic liquid/liquid interfaces, and the methods to modify them with new functionality. Unique examples of applications of electrochemistry at micro- and nanoscopic liquid/liquid interfaces are provided. Some novel and potential research interests in the future in this field are discussed.  相似文献   

10.
This work describes a novel type of bismuth electrode for stripping voltammetry based on coating a silicon substrate with a thin bismuth film by means of sputtering. The bismuth-based sensors were characterized by optical methods (scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD)) and as well as by linear sweep voltammetry. Subsequently, the electrodes were tested for the detection of low concentrations of trace metals (Cd(II), Pb(II) and Ni(II)) by stripping voltammetry. Well-formed stripping peaks were observed for trace concentrations of the target analytes demonstrating “proof-of-principle” for these sensors. This type of electrochemical device, utilizing thin-film technology for the formation of the bismuth film, holds promise for future applications in trace metal analysis.  相似文献   

11.
Electrochemical properties of new electrode material—compact of boron-doped synthetic diamond—is studied for the first time. Cylindrical samples 3.5–4 mm in diameter and 2.5 mm in height were obtained by thermobaric processing of graphite–boron carbide mixtures in the diamond thermodynamic stability region (at the pressure of 8–9 GPa and temperature of ~2500 K). Their electrode behavior is studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The cyclic voltammograms of the compact samples showed that their electrode characteristics are similar to those of traditional thin-film diamond electrodes obtained by the chemical vapor deposition (CVD) technique. In particular, they demonstrate rather wide potential window, low background current in indifferent electrolytes, and good reproducibility. It can be concluded that the diamond compacts practically are not inferior to the thin-film CVD-diamond electrodes and can serve as indicator electrodes, e.g., in electroanalysis. At the same time their compact form may be a convenience in the designing of electrolyzers and other electrochemical devices.  相似文献   

12.
Production techniques, structure, and electrochemical properties of conducting thin-film materials consisting of a polyethylene (PE) substrate covered with a polyacetylene (PA) layer are studied. Properties of a free PA film are determined by the catalyst used in its synthesis. Properties of composites depend on the optimum selection of the PA/PE ratio (by weight), the catalyst used for polymerizing PA, and the PE structure. The capacity of composites is higher than that of free PA films. This points to the possible role of an increased transport of lithium cations at interfaces.  相似文献   

13.
The latest results of voltammetric research on the ionic transfer process of ionisable drugs across bare and lipid-modified liquid-liquid interfaces are reviewed. In recent years, two voltammetric methods have been extensively applied to this purpose, i.e. the classical four electrode voltammetry at the interface between two immiscible electrolyte solutions, and the "three-phase electrode." Thus, a brief background of the methodologies and some successful examples of their application are highlighted in this work. Particular attention is given to the ionic transfer kinetics and to the electrochemical characterization of the drug-membrane interactions between the ionized drugs and lipid-modified interfaces. Future trends in this area are also mentioned in connection with high-throughput assessment of ADMET properties of drugs.  相似文献   

14.
Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.  相似文献   

15.
用循环伏安法(CV),计时库仑法(CC),计时电流法(CA),线性扫描伏安法(LSV)及电流-时间曲线研究了甲氧苄啶(trimethoprim, TMP)在碳纳米管-Nafion修饰电极(MWCNTs-Nafion/GCE)上的电化学行为,电化学动力学性质以及电分析方法.结果表明,TMP在GCE上有一个极弱的氧化峰,而在MWCNTs-Nafion/GCE上出现一个敏锐的氧化峰,表明MWCNTs-Nafion/GCE对TMP电化学氧化具有良好的催化作用.在扫描速度为10~800 mV/s时其氧化峰电流与扫描速度平方根(v1/2)呈良好线性关系,表明TMP在MWCNTs-Nafion/GCE上的伏安行为是受扩散控制的电化学过程.TMP在MWCNTs-Nafion/GCE上氧化峰电流与浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好线性关系;检出限为6.6×10-7 mol/L;RSD在0.75%~1 69%之间;加标回收率在98.1%~101.1%之间.本方法简便快捷,测定结果令人满意,可用于TMP的电化学定量测定.  相似文献   

16.
The paper reports on the electrochemical study of heavily boron-doped diamond (BDD) in aqueous media. Cyclic voltammetry and Mott-Schottky analysis were used to evaluate the influence of the surface termination on the electrochemical properties of BDD electrodes. The behavior of aminated BDD (NH2–BDD) interfaces, prepared from hydrogen-terminated BDD using NH3 plasma and from photochemically oxidized BDD (HO–BDD) using 3-aminopropyltrimethoxysilane (APTMES), are investigated and compared to those of H–BDD and HO–BDD. While H–BDD and HO–BDD electrodes show classical semiconductor behavior, amine-terminated BDD interfaces exhibit metallic behavior at pH < 10 and a semiconductor behavior at more basic pH.  相似文献   

17.
Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.  相似文献   

18.
19.
It is shown that correlation methods are particularly suited for analysing the deterministic and stochastic behaviour of an electrochemical interface. The electrode impedance, which exhibits the deterministic behaviour, can be measured by correlation by means of a white noise; this method allows us to perform very fast measurements. The electrochemical noise, which exhibits the stochastic behaviour, is measured by a crosscorrelation method. Characteristics and performances of these methods are analysed in detail taking account of requirements of the polarization control. These methods are applied to the experimental study of some electrochemical interfaces.  相似文献   

20.
J.P. Zheng  P.C. Goonetilleke  D. Roy 《Talanta》2009,78(3):1056-7537
Carbon nanotube (CNT) electrodes in combination with ionic liquid (IL) electrolytes are potentially important for energy storage systems. We report electrochemical investigation of such a system involving a paper-electrode of multi-wall CNT (MWCNT) in the IL of 1-ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrates on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems are discussed, focusing in particular, on the effects of Faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results are analyzed using an electrode equivalent circuit (EEC) model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号