首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于肝素和多硫酸软骨素(OSCS)在单糖组成上的差别,建立了可用于肝素中OSCS检测的柱前衍生高效液相色谱法.采用3 mol/L三氟乙酸,将受污染的问题肝素在110℃下充氮封管水解4 h,在碱性条件下与1-苯基-3-甲基-5-吡唑啉酮进行衍生化反应,再采用C18反相色谱柱,以0.1 mol/L磷酸盐(pH=6.7)缓冲液/乙腈(体积比82∶18)为流动相,在流速1.0 mL/min、柱温25℃及紫外检测波长245 nm的条件下进行液相色谱分析.结果表明,肝素和OSCS的单糖色谱峰具有良好的分离度,测得2批问题肝素中OSCS杂质的质量分数分别为19.6%和28.3%.该方法具有良好的精密度和重现性,易于推广,适合于肝素中OSCS杂质的检测,并可用于硫酸软骨素A和C与硫酸软骨素B的区分和鉴别.  相似文献   

2.
采用胶束电动毛细管色谱法(MECC)对硫酸多粘菌素E药物中的主要成分多粘菌素E1和E2进行了分离,并测定了多粘菌素E1、E2的含量。分别考察了电泳电压、表面活性剂种类、Brij-35(月桂醇聚氧乙烯醚)浓度、乙腈含量、磷酸盐缓冲液的pH值、氯化钠浓度等实验参数对实验结果的影响,从而确定了最佳的分离条件: 电泳电压为10 kV,运行缓冲液为含有30 mmol/L Brij-35、5%(体积分数)乙腈、0.167 mol/L氯化钠的磷酸二氢钠缓冲液(0.01 mol/L,pH 4.1)。在优化的实验条件下,E1和E2得到了较好的分离,分离度达到1.94。以多粘菌素E1为例,柱效和峰面积的日间及日内测定的相对标准偏差(RSD)均小于5%。E1和E2在硫酸多粘菌素E药物中的含量分别为67%和32%。该方法简便、快速、准确、重现性好。  相似文献   

3.
采用毛细管电泳电化学检测法测定了胡黄连中香草酸和阿魏酸的含量 ;研究了电极电位、运行缓冲液的浓度和酸度、电泳电压及进样时间等对电泳的影响 ,得到了最优化的测定条件 ;以直径为300μm的碳圆盘电极为检测电极 ,工作电极电位为0.8V(vs.SCE) ,在50mmol/L硼砂(pH8.4)运行缓冲液中 ,上述两组分在8min内完全分离 ;香草酸和阿魏酸线性范围分别为5×10-4~1×10-6 mol/L和1×10-3~1×10-6 mol/L ,检出限分别为4.2×10 -7和3.0×10 -7mol/L ;7次平行进样的相对标准偏差(RSD)为2.2 %和2.8 % ,回收率(n=3)分别为99%和103 % ,该法灵敏可靠 ,结果令人满意。  相似文献   

4.
苏彩娜  康艳辉  邓必阳 《分析化学》2006,34(Z1):135-137
基于诺氟沙星对联吡啶钌在铂电极上的电致发光信号有增敏作用,与毛细管电泳结合,建立了一种测定诺氟沙星的电化学发光分析新方法.研究了工作电极电位、磷酸盐缓冲液浓度及其pH值、进样电压和进样时间等实验参数对诺氟沙星测定的影响.在优化的实验条件下,其浓度线性范围为0.02~10 μmol/L;检出限(3σ)为0.0048 μmol/L;峰面积的相对标准偏差为2.6%(1.0 μmol/L,n=11).本法可直接用于尿液中诺氟沙星(NFLX)含量的测定.回收率为92.7%~97.9%,结果满意.  相似文献   

5.
陈昌国  李红  范玉静 《色谱》2011,29(2):137-140
建立了毛细管电泳-非接触电导检测分离测定硫酸沙丁胺醇的分析方法。分别考察了分离介质、背景电解质及其浓度和pH、分离电压、进样时间、激发电压、激发频率等因素对实验结果的影响。在优化的实验条件(以15 mmol/L乳酸水溶液(pH 2.7)为电泳介质,10 kV下电动进样3 s,分离电压为10 kV,激发电压为60 V,激发频率为120 kHz)下,硫酸沙丁胺醇的检出限(信噪比为3)为1.92 mg/L,在9.60~48.0 mg/L质量浓度范围内有良好的线性关系(r=0.995),迁移时间的相对标准偏差(RSD)为2.7%。将该方法用于硫酸沙丁胺醇片和硫酸沙丁胺醇气雾剂中的硫酸沙丁胺醇含量的测定,加标回收率为90%~113%,检测结果与药厂的标示值相符合,为硫酸沙丁胺醇的检测提供了一种简便、快速、高灵敏的方法。关键词: 毛细管电泳;非接触电导检测法;硫酸沙丁胺醇;硫酸沙丁胺醇片;硫酸沙丁胺醇气雾剂  相似文献   

6.
陈玉海  王丽  康连山 《化学通报》2007,70(12):951-953
在pH为2.5~3.0的条件下,猩红S与硫酸卡那霉素(KANA)反应生成复合比为1:1的复合物,使猩红S溶液褪色,最大褪色波长位于535nm,表观摩尔吸光系数(ε)为2.34×104L/(mol.cm),硫酸卡那霉素的浓度在3.5×10-7~8.75×10-6mol/L范围内符合比耳定律。该法用于实际样品平行6次测定,相对标准偏差1.5%~2.9%,回收率95.3%~104.9%。  相似文献   

7.
聚茜素红薄膜修饰电极对硫酸庆大霉素的电催化作用   总被引:5,自引:0,他引:5  
利用聚茜素红薄膜修饰电极的电催化作用,建立了对硫酸庆大霉素含量进行定量分析的一种电分析方法.在0.02 mol/L PBS(pH=6.86)+0.2 mol/L KNO3+5.0×10-4 mol/L ARS的聚合体系中,利用循环伏安法(CV)电聚合制备聚茜素红薄膜修饰电极(PARSE).PARSE对硫酸庆大霉素具有良好的电催化作用,在0.10 mol/L HCl溶液中,硫酸庆大霉素的浓度在0.4~4.0 mg/mL范围内与峰电流呈良好的线性关系,线性回归方程和线性相关系数分别为:ip(μA) = 0.0395C(mg/mL) + 2.1499,γ= 0.9984,检出限可达0.04 mg/mL.利用该法对硫酸庆大霉素针剂进行定量分析,得到满意结果.10次样品分析结果的相对标准偏差小于4%,完全满足微量分析的要求.  相似文献   

8.
提出了共振瑞利散射法(RRS)测定肝素的新方法.在pH为5.7~7.5的B-R缓冲溶液中,硫酸耐而蓝与肝素结合生成离子缔合物,使溶液共振瑞利散射(RRS)增强,其最大散射峰位于738 nm,另在536、 395、 305 nm有3个较弱的散射峰.肝素的质量浓度在0.01~0.5 mg/L范围内,与RRS强度有良好的线性关系,对肝素的检出限(3σ)达0.42 μg/L.研究了适宜的反应条件和影响因素,该方法用于肝素钠注射液的测定,回收率为98.6%~102.5%.  相似文献   

9.
建立了毛细管电泳电化学法检测尿样中苯丙胺的方法.以直径33 μm的碳纤维电极为工作电极,在最佳检测条件即检测电位1.30 V,15 kV下电动进样3 s,选择电泳分离高压为15 kV,电泳缓冲液为pH 10.0的20 mmol/L的磷酸盐,实验发现,在1.0×10-8 ~1.0×10-5 mol/L范围内,响应电流与苯丙胺浓度呈良好的线性关系,线性相关系数为0.998 4,检出限达3.3×10-9 mol/L.对于浓度为1.0×10-5 mol/L的苯丙胺,峰电流及迁移时间的RSD分别为2.4%和2.5%(n=7).对于尿样中2.0×10-5 mol/L 的苯丙胺,回收率为75%.  相似文献   

10.
用毛细管区带电泳 -电化学检测法测定了黄芩及其制剂中黄芩素和黄芩甙的含量。研究了电极电位、电解液酸度和浓度、电泳电压及进样时间等对电泳的影响 ,得到了较为优化的测定条件。以直径为300μm的碳圆盘电极为检测电极 ,电极电位为0.90V(vsSCE) ,在100mmol/L硼酸盐缓冲液(pH9.0)中 ,上述两组分在8min内完全分离。黄芩素和黄芩甙浓度与电泳峰电流分别在5.0×10 -7~1.0×10 -3mol/L和1.0×10 -6~1.0×10 -3mol/L范围内呈良好线性 ,检出限分别为2.24×10 -7mol/L和5.48×10 -7mol/L。7次测定分别含5.0×10 -4mol/L黄芩素和黄芩甙试样溶液 ,峰高的相对标准偏差分别为3.53%和4.03%。  相似文献   

11.
In 2008, heparin contaminated with oversulfated chondroitin sulfate (OSCS) penetrated the worldwide market and was associated with severe adverse effects. Feasible and reliable methods to test heparin for adulteration are needed. The objective was to develop a simple approach based on a microplate assay for quantification of heparin and sulfated glycans using the fluorescent heparin sensor polymer-H (polymer-H assay). However, both heparin and OSCS concentration-dependently increase the fluorescence intensity (FI) of polymer-H, so that OSCS in heparin cannot be detected. The idea was a two-step procedure including, first, separation of heparin by degradation with heparinase I, and then measurement of the remaining OSCS. To achieve complete heparin (unfractionated heparin (UFH), enoxaparin) degradation, several conditions (e.g. incubation time and heparinase I concentration) were optimized by using the aXa assay for monitoring. Defined UFH/OSCS mixtures incubated in this way showed a concentration-dependent FI increase in the polymer-H assay (λ (em) 330 nm, λ (ex) 510 nm). The sensitivity was unexpectedly high with an LOD/LOQ of 0.5%/0.6% OSCS content in heparin. Further experiments testing UFH/OSCS mixtures in the aXa assay confirmed our hypothesis: OSCS inhibits heparinase I resulting in incomplete heparin degradation and thus an additional FI increase of polymer-H by intact heparin. This two-step microplate fluorescence assay is a sensitive, rapid, and simple method for quantification of OSCS in heparin. In contrast with 1H NMR and CE, neither expensive equipment nor much experience are required. It could be applied not only in the quality control of heparin, but also in clinical practice, to check the applied heparin preparation when a patient suffers any adverse effect.  相似文献   

12.
A novel application of two-dimensional correlation analysis has been employed to filter (1)H NMR heparin spectra distinguishing acceptable natural variation and the presence of foreign species. Analysis of contaminated heparin samples, compared to a dataset of accepted heparin samples using two-dimensional correlation spectroscopic analysis of their 1-dimensional (1)H NMR spectra, allowed the spectral features of contaminants to be recovered with high sensitivity, without having to resort to more complicated NMR experiments. Contaminants, which exhibited features distinct from those of heparin and those with features normally hidden within the spectral mass of heparin could be distinguished readily. A heparin sample which had been pre-mixed with a known contaminant, oversulfated chondroitin sulfate (OSCS), was tested against the heparin reference library. It was possible to recover the (1)H NMR spectrum of the OSCS component through difference 2D-COS power spectrum analysis of as little as 0.25% (w/w) with ease, and of 2% (w/w) for more challenging contaminants, whose NMR signals fell under those of heparin. The approach shows great promise for the quality control of heparin and provides the basis for greatly improved regulatory control for the analysis of heparin, as well as other intrinsically heterogeneous and varied products.  相似文献   

13.
Recently, oversulfated chondroitin sulfate (OSCS) present in certain lots of heparin was identified as the toxic contaminant responsible for severe side effects following intravenous heparin administration. The United States Pharmacopeia (USP) and European Pharmacopeia (Eur.Ph.) announced an immediate revision of their monographs for heparin sodium by adding two US Food and Drugs Administration-recommended tests for OSCS based on nuclear magnetic resonance and capillary electrophoresis (CE). However, the proposed CE method provides only partial separation of the OSCS contaminant from heparin, thereby hindering appropriate impurity profiling. Here we present an improved CE method that is especially useful for the reliable quantification of OSCS in heparin samples, but also allows determination of the common impurity dermatan sulfate (DS). Parameters such as type and concentration of background electrolyte, capillary temperature, sample concentration and injection volume were investigated and optimized. Enhancement of the OSCS–heparin separation was achieved by using high concentrations of Tris phosphate (pH 3.0) as background electrolyte. High currents and excessive Joule heating were prevented by employing fused-silica capillaries with an internal diameter of 25 μm. Good separations of OSCS, heparin and DS are obtained within 17 min. The method permits injection of relatively high heparin concentrations (up to 50 mg/ml) and large sample volumes (up to 5% of the capillary volume) allowing OSCS and DS determination in heparin down to the 0.05% and 0.5% (w/w) level, respectively. The CE method is shown to be repeatable and linear (R2 > 0.99) for OSCS, heparin and DS. CE analyses of OSCS-contaminated heparin samples and different heparin standards further demonstrate the utility of the method.  相似文献   

14.
Quantification of oversulfated chondroitin sulfate (OSCS) in biomedical heparin preparations is achieved using a recently described potentiometric polyanion sensor-based approach operated in a kinetic mode of analysis. This is accomplished by adjusting the concentration of the test sample to a range where the OSCS level is low enough for the sensor not to achieve a full and rapid equilibrium phase boundary potential change at the membrane/sample interface upon exposure to the heparin sample. Using this method, the OSCS wt% determined within heparin samples containing OSCS are shown to be in good agreement with those determined by an accepted NMR method.  相似文献   

15.
There are several methods for sensitive detection of oversulfated chondroitin sulfate (OSCS) in heparin. Although contamination with OSCS is unlikely to be repeated, use of other compounds to counterfeit heparin must be considered. We have previously developed a two-step fluorescence microplate assay (two-step FI assay) for detection of OSCS. First, the heparin sample is incubated with heparinase I, then its increasing effect on the fluorescence intensity (FI) of the sensor molecule Polymer-H is measured (PolyH assay). The high sensitivity of the assay is shown to be based on heparinase I inhibition by OSCS. The objective of this study was to evaluate another assay option — indirect quantification of OSCS after heparinase I incubation by means of the anti-Factor Xa (aXa) activity of the remaining undegraded heparin (two-step aXa assay). We also examined, whether other heparin mimetics (HepM), direct Factor Xa inhibitors (DXI), and protein impurities are detectable by use of these assays. Heparin was spiked with different amounts of HepM including OSCS, pentosan polysulfate, dextran sulfate, curdlan sulfate, the natural contaminant dermatan sulfate, the DXI rivaroxaban, and BSA as a protein. These samples were compared with pure heparin in the two-step FI assay, the two-step aXa assay, and in the PolyH assay and the aXa assay without heparinase I incubation. Both two-step assays sensitively measured contamination with all the HepM (LOD ≤ 0.5%, LOQ ≤ 0.7%). The two-step aXa assay also detected rivaroxaban (LOD 0.3%, LOQ 0.4%), whereas the two-step FI assay was shown to be suited to determination of protein impurities (LOD 0.11%, LOQ 0.13%). Use of two different heparinase I inactivation procedures enabled clear differentiation between protein, HepM, and both contaminants. Finally, with the aXa assay the heparin potency can be determined in the same assay run, whereas the FI increase in the PolyH assay was shown to be useful for identification. In conclusion, both the two-step FI assay and the two-step aXa assay are sensitive, rapid, and simple tests for the detection of counterfeit heparin. Comprehensive information about heparin quality can be obtained by their combined use and the parallel measurement of non-incubated heparin samples.  相似文献   

16.
Chemometric analysis of a set of one-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectral data for heparin sodium active pharmaceutical ingredient (API) samples was employed to distinguish USP-grade heparin samples from those containing oversulfated chondroitin sulfate (OSCS) contaminant and/or unacceptable levels of dermatan sulfate (DS) impurity. Three chemometric pattern recognition approaches were implemented: classification and regression tree (CART), artificial neural network (ANN), and support vector machine (SVM). Heparin sodium samples from various manufacturers were analyzed in 2008 and 2009 by 1D (1)H NMR, strong anion-exchange high-performance liquid chromatography, and percent galactosamine in total hexosamine tests. Based on these data, the samples were divided into three groups: Heparin, DS ≤ 1.0% and OSCS = 0%; DS, DS > 1.0% and OSCS = 0%; and OSCS, OSCS > 0% with any content of DS. Three data sets corresponding to different chemical shift regions (1.95-2.20, 3.10-5.70, and 1.95-5.70 ppm) were evaluated. While all three chemometric approaches were able to effectively model the data in the 1.95-2.20 ppm region, SVM was found to substantially outperform CART and ANN for data in the 3.10-5.70 ppm region in terms of classification success rate. A 100% prediction rate was frequently achieved for discrimination between heparin and OSCS samples. The majority of classification errors between heparin and DS involved cases where the DS content was close to the 1.0% DS borderline between the two classes. When these borderline samples were removed, nearly perfect classification results were attained. Satisfactory results were achieved when the resulting models were challenged by test samples containing blends of heparin APIs spiked with non-, partially, or fully oversulfated chondroitin sulfate A, heparan sulfate, or DS at the 1.0%, 5.0%, and 10.0% (w/w) levels. This study demonstrated that the combination of 1D (1)H NMR spectroscopy with multivariate chemometric methods is a nonsubjective, statistics-based approach for heparin quality control and purity assessment that, once standardized, minimizes the need for expert analysts.  相似文献   

17.
Recently, oversulfated chondroitin sulfate (OSCS) was identified in contaminated heparin preparations, which were linked to several adverse clinical events and deaths. Orthogonal analytical techniques, namely nuclear magnetic resonance (NMR) and capillary electrophoresis (CE), have since been applied by several authors for the evaluation of heparin purity and safety. NMR identification and quantification of residual solvents and non-volatile low molecular contaminants with USP acceptance levels of toxicity was achieved 40-fold faster than the traditional GC-headspace technique, which takes ~120 min against ~3 min to obtain a (1)H NMR spectrum with a signal/noise ratio of at least 1000/1. The procedure allowed detection of Class 1 residual solvents at 2 ppm and quantification was possible above 10 ppm. 2D NMR techniques (edited-HSQC (1)H/(13)C) permitted visualization of otherwise masked EDTA signals at 3.68/59.7 ppm and 3.34/53.5 ppm, which may be overlapping mononuclear heparin signals, or those of ethanol and methanol. Detailed NMR and ESI-MS/MS studies revealed a hitherto unknown contaminant, tris(2-n-butoxyethyl) phosphate (TBEP), which has potential health risks.  相似文献   

18.
A method based on capillary electrophoresis with electrochemical detection (CE-ED) has been developed for the determination of hesperidin (HP) and synephrine (SP) in the Chinese traditional herbal drug, Pericarpium Citri Reticulatae, the dried rind of the ripe fruits of Citrus reticulata Blanco (mandarin orange). The effects of some important factors such as the acidity and concentration of running buffer, separation voltage, and detection potential were investigated to determine the optimum conditions. The working electrode was a 300 microm diameter carbon disc electrode positioned opposite the outlet of the capillary. Both analytes could be well separated within 5 min in a 40 cm long capillary at a separation voltage of 12 kV in 50 mmol L(-1) borate buffer (pH 9.0). Excellent linearity was observed for the dependence of peak current on analyte concentration in the range from 2.5 x 10(-6) to 1.0 x 10(-3) mol L(-1) for SP and from 5.0 x 10(-6) to 1.0 x 10(-3) mol L(-1) for HP. The detection limits (S/N=3) for SP and HP were 4.96 x 10(-7) mol L(-1) and 6.54 x 10(-7) mol L(-1), respectively. This method has been successfully applied for the analysis of real samples, with satisfactory results.  相似文献   

19.
A rapid and sensitive method was developed for the analysis of disaccharide composition in heparin (HP) and heparan sulfate (HS) by reversed-phase ion-pair chromatography on a 2 μm porous silica gel column. HP and HS were digested with heparin lyase I, II and III in combination, and the produced unsaturated disaccharides were separated within 15 min. Calibration graphs were linear in the range 1 ng–1 μg with the fluorometoric post-column detection using 2-cyanoacetamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号