首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parameters of Gaussian multivariate models are often estimated using the maximum likelihood approach. In spite of its merits, this methodology is not practical when the sample size is very large, as, for example, in the case of massive georeferenced data sets. In this paper, we study the asymptotic properties of the estimators that minimize three alternatives to the likelihood function, designed to increase the computational efficiency. This is achieved by applying the information sandwich technique to expansions of the pseudo-likelihood functions as quadratic forms of independent normal random variables. Theoretical calculations are given for a first-order autoregressive time series and then extended to a two-dimensional autoregressive process on a lattice. We compare the efficiency of the three estimators to that of the maximum likelihood estimator as well as among themselves, using numerical calculations of the theoretical results and simulations.  相似文献   

2.
We propose a parametric model for a bivariate stable Lévy process based on a Lévy copula as a dependence model. We estimate the parameters of the full bivariate model by maximum likelihood estimation. As an observation scheme we assume that we observe all jumps larger than some ε>0 and base our statistical analysis on the resulting compound Poisson process. We derive the Fisher information matrix and prove asymptotic normality of all estimates when the truncation point ε→0. A simulation study investigates the loss of efficiency because of the truncation.  相似文献   

3.
The asymptotic distribution of the quasi-maximum likelihood (QML) estimator is established for generalized autoregressive conditional heteroskedastic (GARCH) processes, when the true parameter may have zero coefficients. This asymptotic distribution is the projection of a normal vector distribution onto a convex cone. The results are derived under mild conditions. For an important subclass of models, no moment condition is imposed on the GARCH process. The main practical implication of these results concerns the estimation of overidentified GARCH models.  相似文献   

4.
Summary LetX t , ...,X n be random variables forming a realization from a linear process where {Z t } is a sequence of independent and identically distributed random variables with E|Z t |<∞ for some ε>0, andg r →0 asr→∞ at some specified rate. LetX 1 have a probability density functionf. It is then established that for every realx, the standard kernel type estimator based onX t (1≦tn) is, under some general regularity conditions, asymptotically normal and converges a.s. tof(x) asn→∞. Research was supported in part by the Air Force Office of Scientific Research Grant No. AFOSR-81-0058.  相似文献   

5.
In this paper, we consider the minimum density power divergence estimator for the tail index of heavy tailed distributions in strong mixing processes. It is shown that the estimator is consistent and asymptotically normal under regularity conditions. The simulation results demonstrate that the estimator is robust in the presence of outliers.  相似文献   

6.
An autoregressive-moving average model in which all roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximate likelihood for a causal all-pass model is given and used to establish asymptotic normality for maximum likelihood estimators under general conditions. Behavior of the estimators for finite samples is studied via simulation. A two-step procedure using all-pass models to identify and estimate noninvertible autoregressive-moving average models is developed and used in the deconvolution of a simulated water gun seismogram.  相似文献   

7.
This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.  相似文献   

8.
Edgeworth expansions for the distribution of a sequential least squares estimator in the random coefficient autoregressive (RCA) model are derived. The regenerative approach to second-order asymptotic analysis of Markov-type statistical models is developed.  相似文献   

9.
The problem of estimating frequencies and damping factors of real superimposed signals with multiple poles in white Gaussian noise is considered. Such signals are described by real quasipolynomials, i.e. by linear combinations of real damped sinusoids multiplied by power functions. In a particular case when poles are simple, a real quasipolynomial becomes a real damped sinusoid. An explicit expression of the Cramér-Rao bound (CRB) for the estimation of frequencies and damping factors of the signals is obtained. To derive the CRB, we use the expression for the Fisher information matrix (FIM) which we obtained in a previous paper for the model of complex quasipolynomials (i.e. complex exponentials multiplied by complex polynomials). We rewrite the model of real quasipolynomials as a model of complex quasipolynomials with constraints imposed on the parameter set. Then we make use of the formula presented by Gorman and Hero that allows us to obtain the CRB for the model with constraints from the FIM for the model without constraints. The results of numerical simulations are presented and discussed.  相似文献   

10.
The paper is devoted to the problem of statistical estimation of a multivariate distribution density, which is a discrete mixture of Gaussian distributions. A heuristic approach is considered, based on the use of the EM algorithm and nonparametric density estimation with a sequential increase in the number of components of the mixture. Criteria for testing of model adequacy are discussed.  相似文献   

11.
Robust Bayesian analysis is concerned with the problem of making decisions about some future observation or an unknown parameter, when the prior distribution belongs to a class Γ instead of being specified exactly. In this paper, the problem of robust Bayesian prediction and estimation under a squared log error loss function is considered. We find the posterior regret Γ-minimax predictor and estimator in a general class of distributions. Furthermore, we construct the conditional Γ-minimax, most stable and least sensitive prediction and estimation in a gamma model. A prequential analysis is carried out by using a simulation study to compare these predictors.  相似文献   

12.
For a general non-Gaussian stationary linear process, quasi-maximum likelihood estimation of a subset of the parameters of the spectral density is considered when the complementary subset is suspected to be superfluous. A preliminary test quasi-maximum likelihood estimator (q-MLE) of parameters is introduced and, in the light of its mean square error, is compared with the restricted and unrestricted q-MLE.  相似文献   

13.
We give expansions for the unbiased estimator of a parametric function of the mean vector in a multivariate natural exponential family with simple quadratic variance function. This expansion is given in terms of a system of multivariate orthogonal polynomials with respect to the density of the sample mean. We study some limit properties of the system of orthogonal polynomials. We show that these properties are useful to establish the limit distribution of unbiased estimators.  相似文献   

14.
We propose a new definition of the Neyman chi-square divergence between distributions. Based on convexity properties and duality, this version of the χ2 is well suited both for the classical applications of the χ2 for the analysis of contingency tables and for the statistical tests in parametric models, for which it is advocated to be robust against outliers.We present two applications in testing. In the first one, we deal with goodness-of-fit tests for finite and infinite numbers of linear constraints; in the second one, we apply χ2-methodology to parametric testing against contamination.  相似文献   

15.
For Wishart density functions, there remains a long-time question unsolved. That is whether there exists the closed-form MLEs of mean matrices over the partially Löwner ordering sets. In this note, we provide an affirmative answer by demonstrating a unified procedure on exactly how the closed-form MLEs are obtained for the simple ordering case. Under the Kullback-Leibler loss function, a property of obtained MLEs is further studied. Some applications of the obtained closed-form MLEs, including the comparison between our ML estimates and Calvin and Dykstra's [Maximum likelihood estimation of a set of covariance matrices under Löwner order restrictions with applications to balanced multivariate variance components models, Ann. Statist. 19 (1991) 850-869.] which obtained by iterative algorithm, are also made.  相似文献   

16.
17.
In this paper we consider robust parameter estimation based on a certain cross entropy and divergence. The robust estimate is defined as the minimizer of the empirically estimated cross entropy. It is shown that the robust estimate can be regarded as a kind of projection from the viewpoint of a Pythagorean relation based on the divergence. This property implies that the bias caused by outliers can become sufficiently small even in the case of heavy contamination. It is seen that the asymptotic variance of the robust estimator is naturally overweighted in proportion to the ratio of contamination. One may surmise that another form of cross entropy can present the same behavior as that discussed above. It can be proved under some conditions that no cross entropy can present the same behavior except for the cross entropy considered here and its monotone transformation.  相似文献   

18.
The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in mixed linear models. However, its extension to hierarchical generalized linear models (HGLMs) is often hampered by analytically intractable integrals. Numerical integration such as Gauss-Hermite quadrature (GHQ) is generally not recommended when the dimensionality of the integral is high. With binary data various extensions of the REML method have been suggested, but they have had unsatisfactory biases in estimation. In this paper we propose a statistically and computationally efficient REML procedure for the analysis of binary data, which is applicable over a wide class of models and design structures. We propose a bias-correction method for models such as binary matched pairs and discuss how the REML estimating equations for mixed linear models can be modified to implement more general models.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号