共查询到20条相似文献,搜索用时 15 毫秒
1.
Lei Shi 《Journal of multivariate analysis》2008,99(9):1860-1877
This paper studies case deletion diagnostics for multilevel models. Using subset deletion, diagnostic measures for identifying influential units at any level are developed for both fixed and random parameters. Two approximate update formulae are derived. The first formula uses one-step approximation, while the second formula also includes the impact of estimating the random parameter. Two examples are used to illustrate the methodology developed. 相似文献
2.
Alexander Shapiro 《Journal of multivariate analysis》2009,100(5):936-945
The aim of this paper is to present a framework for asymptotic analysis of likelihood ratio and minimum discrepancy test statistics. First order asymptotics are presented in a general framework under minimal regularity conditions and for not necessarily nested models. In particular, these asymptotics give sufficient and in a sense necessary conditions for asymptotic normality of test statistics under alternative hypotheses. Second order asymptotics, and their implications for bias corrections, are also discussed in a somewhat informal manner. As an example, asymptotics of test statistics in the analysis of covariance structures are discussed in detail. 相似文献
3.
Haruhiko Ogasawara 《Journal of multivariate analysis》2009,100(5):902-912
Asymptotic expansions of the distributions of parameter estimators in mean and covariance structures are derived. The parameters may be common to, or specific in means and covariances of observable variables. The means are possibly structured by the common/specific parameters. First, the distributions of the parameter estimators standardized by the population asymptotic standard errors are expanded using the single- and the two-term Edgeworth expansions. In practice, the pivotal statistic or the Studentized estimator with the asymptotically distribution-free standard error is of interest. An asymptotic distribution of the pivotal statistic is also derived by the Cornish-Fisher expansion. Simulations are performed for a factor analysis model with nonzero factor means to see the accuracy of the asymptotic expansions in finite samples. 相似文献
4.
The authors study a heteroscedastic partially linear regression model and develop an inferential procedure for it. This includes a test of heteroscedasticity, a two-step estimator of the heteroscedastic variance function, semiparametric generalized least-squares estimators of the parametric and nonparametric components of the model, and a bootstrap goodness of fit test to see whether the nonparametric component can be parametrized. 相似文献
5.
In this paper, we discuss the construction of the confidence intervals for the regression vector β in a linear model under negatively associated errors. It is shown that the blockwise empirical likelihood (EL) ratio statistic for β is asymptotically χ2-type distributed. The result is used to obtain an EL based confidence region for β. 相似文献
6.
Behzad Djafari Rouhani Hadi Khatibzadeh 《Nonlinear Analysis: Theory, Methods & Applications》2009,71(12):e147
By using previous results of Djafari Rouhani [B. Djafari Rouhani, Ergodic theorems for nonexpansive sequences in Hilbert spaces and related problems, Ph.D. Thesis, Yale university, 1981, part I, pp. 1-76; B. Djafari Rouhani, Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl. 147 (1990) 465-476; B. Djafari Rouhani, Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl. 151 (1990) 226-235] for dissipative systems, we study the asymptotic behavior of solutions to the following system of second-order nonhomogeneous evolution equations:
7.
In this paper, we propose auto-associative (AA) models to generalize Principal component analysis (PCA). AA models have been introduced in data analysis from a geometrical point of view. They are based on the approximation of the observations scatter-plot by a differentiable manifold. In this paper, they are interpreted as Projection pursuit models adapted to the auto-associative case. Their theoretical properties are established and are shown to extend the PCA ones. An iterative algorithm of construction is proposed and its principle is illustrated both on simulated and real data from image analysis. 相似文献
8.
We consider informative dimension reduction for regression problems with random predictors. Based on the conditional specification of the model, we develop a methodology for replacing the predictors with a smaller number of functions of the predictors. We apply the method to the case where the inverse conditional model is in the linear exponential family. For such an inverse model and the usual Normal forward regression model it is shown that, for any number of predictors, the sufficient summary has dimension two or less. In addition, we develop a test of dimensionality. The relationship of our method with the existing dimension reduction theory based on the marginal distribution of the predictors is discussed. 相似文献
9.
Joe Masaro 《Linear algebra and its applications》2008,429(7):1392-1408
Suppose that Y=(Yi) is a normal random vector with mean Xb and covariance σ2In, where b is a p-dimensional vector (bj),X=(Xij) is an n×p matrix. A-optimal designs X are chosen from the traditional set D of A-optimal designs for ρ=0 such that X is still A-optimal in D when the components Yi are dependent, i.e., for i≠i′, the covariance of Yi,Yi′ is ρ with ρ≠0. Such designs depend on the sign of ρ. The general results are applied to X=(Xij), where Xij∈{-1,1}; this corresponds to a factorial design with -1,1 representing low level or high level respectively, or corresponds to a weighing design with -1,1 representing an object j with weight bj being weighed on the left and right of a chemical balance respectively. 相似文献
10.
The theory of Gaussian graphical models is a powerful tool for independence analysis between continuous variables. In this framework, various methods have been conceived to infer independence relations from data samples. However, most of them result in stepwise, deterministic, descent algorithms that are inadequate for solving this issue. More recent developments have focused on stochastic procedures, yet they all base their research on strong a priori knowledge and are unable to perform model selection among the set of all possible models. Moreover, convergence of the corresponding algorithms is slow, precluding applications on a large scale. In this paper, we propose a novel Bayesian strategy to deal with structure learning. Relating graphs to their supports, we convert the problem of model selection into that of parameter estimation. Use of non-informative priors and asymptotic results yield a posterior probability for independence graph supports in closed form. Gibbs sampling is then applied to approximate the full joint posterior density. We finally give three examples of structure learning, one from synthetic data, and the two others from real data. 相似文献
11.
For a normally distributed random matrix Y with mean zero and general covariance matrix ΣY and for a symmetric matrix W, necessary and sufficient conditions are derived for the Wishartness of Y′WY. 相似文献
12.
Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods
Christian Hennig 《Journal of multivariate analysis》2008,99(6):1154-1176
Two robustness criteria are presented that are applicable to general clustering methods. Robustness and stability in cluster analysis are not only data dependent, but even cluster dependent. Robustness is in the present paper defined as a property of not only the clustering method, but also of every individual cluster in a data set. The main principles are: (a) dissimilarity measurement of an original cluster with the most similar cluster in the induced clustering obtained by adding data points, (b) the dissolution point, which is an adaptation of the breakdown point concept to single clusters, (c) isolation robustness: given a clustering method, is it possible to join, by addition of g points, arbitrarily well separated clusters?Results are derived for k-means, k-medoids (k estimated by average silhouette width), trimmed k-means, mixture models (with and without noise component, with and without estimation of the number of clusters by BIC), single and complete linkage. 相似文献
13.
L. Tarkkonen 《Journal of multivariate analysis》2005,96(1):172-189
Our aim is to construct a general measurement framework for analyzing the effects of measurement errors in multivariate measurement scales. We define a measurement model, which forms the core of the framework. The measurement scales in turn are often produced by methods of multivariate statistical analysis. As a central element of the framework, we introduce a new, general method of estimating the reliability of measurement scales. It is more appropriate than the classical procedures, especially in the context of multivariate analyses. The framework provides methods for various topics related to the quality of measurement, such as assessing the structural validity of the measurement model, estimating the standard errors of measurement, and correcting the predictive validity of a measurement scale for attenuation. A proper estimate of reliability is a requisite in each task. We illustrate the idea of the measurement framework with an example based on real data. 相似文献
14.
The paper considers general multiplicative models for complete and incomplete contingency tables that generalize log-linear and several other models and are entirely coordinate free. Sufficient conditions for the existence of maximum likelihood estimates under these models are given, and it is shown that the usual equivalence between multinomial and Poisson likelihoods holds if and only if an overall effect is present in the model. If such an effect is not assumed, the model becomes a curved exponential family and a related mixed parameterization is given that relies on non-homogeneous odds ratios. Several examples are presented to illustrate the properties and use of such models. 相似文献
15.
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The asymptotic distribution theory is derived. Small sample simulations and a real data set are used to illustrate the proposed estimation methods. 相似文献
16.
Esra Akdeniz Duran Hongchang Hu 《Journal of Computational and Applied Mathematics》2011,235(5):1418-1428
In this paper we consider the semiparametric regression model, y=Xβ+f+ε. Recently, Hu [11] proposed ridge regression estimator in a semiparametric regression model. We introduce a Liu-type (combined ridge-Stein) estimator (LTE) in a semiparametric regression model. Firstly, Liu-type estimators of both β and f are attained without a restrained design matrix. Secondly, the LTE estimator of β is compared with the two-step estimator in terms of the mean square error. We describe the almost unbiased Liu-type estimator in semiparametric regression models. The almost unbiased Liu-type estimator is compared with the Liu-type estimator in terms of the mean squared error matrix. A numerical example is provided to show the performance of the estimators. 相似文献
17.
Muni S. Srivastava 《Journal of multivariate analysis》2010,101(9):1970-1980
In this paper, we consider the problem of selecting the variables of the fixed effects in the linear mixed models where the random effects are present and the observation vectors have been obtained from many clusters. As the variable selection procedure, here we use the Akaike Information Criterion, AIC. In the context of the mixed linear models, two kinds of AIC have been proposed: marginal AIC and conditional AIC. In this paper, we derive three versions of conditional AIC depending upon different estimators of the regression coefficients and the random effects. Through the simulation studies, it is shown that the proposed conditional AIC’s are superior to the marginal and conditional AIC’s proposed in the literature in the sense of selecting the true model. Finally, the results are extended to the case when the random effects in all the clusters are of the same dimension but have a common unknown covariance matrix. 相似文献
18.
Karsten Schmidt 《Acta Appl Math》1996,43(1):127-138
We consider the linear regression model where prior information in the form of linear inequalities restricts the parameter space to a polyhedron. Since the linear minimax estimator has, in general, to be determined numerically, it was proposed to minimize an upper bound of the maximum risk instead. The resulting so-called quasiminimax estimator can be easily calculated in closed form. Unfortunately, both minimax estimators may violate the prior information. Therefore, we consider projection estimators which are obtained by projecting the estimate in an optional second step. The performance of these estimators is investigated in a Monte Carlo study together with several least squares estimators, including the inequality restricted least squares estimator. It turns out that both the projected and the unprojected quasiminimax estimators have the best average performance. 相似文献
19.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated. 相似文献
20.
Tatsuya Kubokawa 《Journal of multivariate analysis》2011,102(3):641-660
In the problem of selecting the explanatory variables in the linear mixed model, we address the derivation of the (unconditional or marginal) Akaike information criterion (AIC) and the conditional AIC (cAIC). The covariance matrices of the random effects and the error terms include unknown parameters like variance components, and the selection procedures proposed in the literature are limited to the cases where the parameters are known or partly unknown. In this paper, AIC and cAIC are extended to the situation where the parameters are completely unknown and they are estimated by the general consistent estimators including the maximum likelihood (ML), the restricted maximum likelihood (REML) and other unbiased estimators. We derive, related to AIC and cAIC, the marginal and the conditional prediction error criteria which select superior models in light of minimizing the prediction errors relative to quadratic loss functions. Finally, numerical performances of the proposed selection procedures are investigated through simulation studies. 相似文献