共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we show how, based on a decomposition of the likelihood ratio test for sphericity into two independent tests and a suitably developed decomposition of the characteristic function of the logarithm of the likelihood ratio test statistic to test independence in a set of variates, we may obtain extremely well-fitting near-exact distributions for both test statistics. Since both test statistics have the distribution of the product of independent Beta random variables, it is possible to obtain near-exact distributions for both statistics in the form of Generalized Near-Integer Gamma distributions or mixtures of these distributions. For the independence test statistic, numerical studies and comparisons with asymptotic distributions proposed by other authors show the extremely high accuracy of the near-exact distributions developed as approximations to the exact distribution. Concerning the sphericity test statistic, comparisons with formerly developed near-exact distributions show the advantages of these new near-exact distributions. 相似文献
2.
We propose a formal test of separability of covariance models based on a likelihood ratio statistic. The test is developed in the context of multivariate repeated measures (for example, several variables measured at multiple times on many subjects), but can also apply to a replicated spatio-temporal process and to problems in meteorology, where horizontal and vertical covariances are often assumed to be separable. Separable models are a common way to model spatio-temporal covariances because of the computational benefits resulting from the joint space-time covariance being factored into the product of a covariance function that depends only on space and a covariance function that depends only on time. We show that when the null hypothesis of separability holds, the distribution of the test statistic does not depend on the type of separable model. Thus, it is possible to develop reference distributions of the test statistic under the null hypothesis. These distributions are used to evaluate the power of the test for certain nonseparable models. The test does not require second-order stationarity, isotropy, or specification of a covariance model. We apply the test to a multivariate repeated measures problem. 相似文献
3.
Yasunori Fujikoshi 《Annals of the Institute of Statistical Mathematics》1981,33(1):279-285
Summary This paper deals with the likelihood ratio test for additional information in a multivariate linear model. It is shown that
the power of the likelihood ratio test procedure has a monotonicity property. Asymptotic approximations for the power are
also obtained. 相似文献
4.
In this paper the distribution of the likelihood ratio test for testing the reality of the covariance matrix of a complex multivariate normal distribution is investigated. Some simplifications in the noncentral distribution are made and the noncentral distribution is derived for the special case where the rank of the noncentrality matrix is two. In the null case exact expressions for the distribution are given up to p = 6, and percentage points are tabulated. These percentage points were compared with percentage points derived from an asymptotic expansion of the distribution, and the accuracy of the approximation was found to be sufficient for several practical situations. 相似文献
5.
6.
We consider the efficiency and the power of the normal theory test for independence after a Box-Cox transformation. We obtain an expression for the correlation between the variates after a Box-Cox transformation in terms of the correlation on the normal scale. We discuss the efficiency of test of independence after a Box-Cox transformation and show that for the family considered it is always more efficient to conduct the test of independence based on Pearson correlation coefficient after transformation to normality. Power of test of independence before and after a Box-Cox transformation is studied for a finite sample size using Monte Carlo simulation. Our results show that we can increase the power of the normal-theory test for independence after estimating the transformation parameter from the data. The procedure has application for generating non-negative random variables with prescribed correlation. 相似文献
7.
This paper presents a statistic for testing the hypothesis of elliptical symmetry. The statistic also provides a specialized test of multivariate normality. We obtain the asymptotic distribution of this statistic under the null hypothesis of multivariate normality, and give a bootstrapping procedure for approximating the null distribution of the statistic under an arbitrary elliptically symmetric distribution. We present simulation results to examine the accuracy of the asymptotic distribution and the performance of the bootstrapping procedure. Finally, for selected alternatives, we compare the power of our test statistic with that of recently proposed tests for elliptical symmetry given by Manzotti et al. [A statistic for testing the null hypothesis of elliptical symmetry, J. Multivariate Anal. 81 (2002) 274-285] and Schott [Testing for elliptical symmetry in covariance-matrix-based analyses, Statist. Probab. Lett. 60 (2002) 395-404], and with that of the well known tests for multivariate normality of Mardia [Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970) 519-530] and Baringhaus and Henze [A consistent test for multivariate normality based on the empirical characteristic function, Metrika 35 (1988) 339-348]. 相似文献
8.
Boaz Nadler 《Journal of multivariate analysis》2011,102(2):363-371
The ratio of the largest eigenvalue divided by the trace of a p×p random Wishart matrix with n degrees of freedom and an identity covariance matrix plays an important role in various hypothesis testing problems, both in statistics and in signal processing. In this paper we derive an approximate explicit expression for the distribution of this ratio, by considering the joint limit as both p,n→∞ with p/n→c. Our analysis reveals that even though asymptotically in this limit the ratio follows a Tracy-Widom (TW) distribution, one of the leading error terms depends on the second derivative of the TW distribution, and is non-negligible for practical values of p, in particular for determining tail probabilities. We thus propose to explicitly include this term in the approximate distribution for the ratio. We illustrate empirically using simulations that adding this term to the TW distribution yields a quite accurate expression to the empirical distribution of the ratio, even for small values of p,n. 相似文献
9.
This paper investigates the asymptotic properties of the modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models with an unknown structural parameter. It is shown that the modified likelihood ratio statistic has χ22 null limiting distribution. 相似文献
10.
Jemila S. Hamid Joseph Beyene Dietrich von Rosen 《Journal of multivariate analysis》2011,102(2):238-251
A trace test for the mean parameters of the growth curve model is proposed. It is constructed using the restricted maximum likelihood followed by an estimated likelihood ratio approach. The statistic reduces to the Lawley-Hotelling trace test for the Multivariate Analysis of Variance (MANOVA) models. Our test statistic is, therefore, a natural extension of the classical trace test to GMANOVA models. We show that the distribution of the test under the null hypothesis does not depend on the unknown covariance matrix Σ. We also show that the distributions under the null and alternative hypotheses can be represented as sums of weighted central and non-central chi-square random variables, respectively. Under the null hypothesis, the Satterthwaite approximation is used to get an approximate critical point. A novel Satterthwaite type approximation is proposed to obtain an approximate power. A simulation study is performed to evaluate the performance of our proposed test and numerical examples are provided as illustrations. 相似文献
11.
Empirical likelihood (EL) ratio tests are developed for testing for or against the hypothesis that k-population means μ1,μ2,…,μk are isotonic with respect to some quasi-order ? on {1,2,…,k}. The null asymptotic distributions are derived and are shown to be of chi-bar squared type. The asymptotic power of the proposed test for testing for equality of these means against the order restriction is derived under contiguous alternatives and a simulation study is carried out to investigate the finite sample behaviors of this test. In addition, an adjusted EL test is used to improve the small size performance of our test and an example is also discussed to illustrate the theoretical results. 相似文献
12.
A new class of bivariate distributions is presented in this paper. The procedure used in this paper is based on a latent random variable with exponential distribution. The model introduced here is of Marshall-Olkin type. A mixture of the proposed bivariate distributions is also discussed. The results obtained here generalize those of the bivariate exponential distribution present in the literature. 相似文献
13.
A weighted multivariate signed-rank test is introduced for an analysis of multivariate clustered data. Observations in different clusters may then get different weights. The test provides a robust and efficient alternative to normal theory based methods. Asymptotic theory is developed to find the approximate p-value as well as to calculate the limiting Pitman efficiency of the test. A conditionally distribution-free version of the test is also discussed. The finite-sample behavior of different versions of the test statistic is explored by simulations and the new test is compared to the unweighted and weighted versions of Hotelling’s T2 test and the multivariate spatial sign test introduced in [D. Larocque, J. Nevalainen, H. Oja, A weighted multivariate sign test for cluster-correlated data, Biometrika 94 (2007) 267-283]. Finally, a real data example is used to illustrate the theory. 相似文献
14.
James R. Schott 《Journal of multivariate analysis》2006,97(4):827-843
For the test of sphericity, Ledoit and Wolf [Ann. Statist. 30 (2002) 1081-1102] proposed a statistic which is robust against high dimensionality. In this paper, we consider a natural generalization of their statistic for the test that the smallest eigenvalues of a covariance matrix are equal. Some inequalities are obtained for sums of eigenvalues and sums of squared eigenvalues. These bounds permit us to obtain the asymptotic null distribution of our statistic, as the dimensionality and sample size go to infinity together, by using distributional results obtained by Ledoit and Wolf [Ann. Statist. 30 (2002) 1081-1102]. Some empirical results comparing our test with the likelihood ratio test are also given. 相似文献
15.
Ciprian M Crainiceanu 《Journal of multivariate analysis》2004,91(1):35-52
We propose likelihood and restricted likelihood ratio tests for goodness-of-fit of nonlinear regression. The first-order Taylor approximation around the MLE of the regression parameters is used to approximate the null hypothesis and the alternative is modeled nonparametrically using penalized splines. The exact finite sample distribution of the test statistics is obtained for the linear model approximation and can be easily simulated. We recommend using the restricted likelihood instead of the likelihood ratio test because restricted maximum-likelihood estimates are not as severely biased as the maximum-likelihood estimates in the penalized splines framework. 相似文献
16.
We consider the problem of testing whether the common mean of a single n-vector of multivariate normal random variables with known variance and unknown common correlation ρ is zero. We derive the standardized likelihood ratio test for known ρ and explore different ways of proceeding with ρ unknown. We evaluate the performance of the standardized statistic where ρ is replaced with an estimate of ρ and determine the critical value cn that controls the type I error rate for the least favorable ρ in [0,1]. The constant cn increases with n and this procedure has pathological behavior if ρ depends on n and ρn converges to zero at a certain rate. As an alternate approach, we replace ρ with the upper limit of a (1−βn) confidence interval chosen so that cn=c for all n. We determine βn so that the type I error rate is exactly controlled for all ρ in [0,1]. We also investigate a simpler approach where we bound the type I error rate. The former method performs well for all n while the less powerful bound method may be a useful in some settings as a simple approach. The proposed tests can be used in different applications, including within-cluster resampling and combining exchangeable p-values. 相似文献
17.
Empirical likelihood for single-index models 总被引:1,自引:0,他引:1
The empirical likelihood method is especially useful for constructing confidence intervals or regions of the parameter of interest. This method has been extensively applied to linear regression and generalized linear regression models. In this paper, the empirical likelihood method for single-index regression models is studied. An estimated empirical log-likelihood approach to construct the confidence region of the regression parameter is developed. An adjusted empirical log-likelihood ratio is proved to be asymptotically standard chi-square. A simulation study indicates that compared with a normal approximation-based approach, the proposed method described herein works better in terms of coverage probabilities and areas (lengths) of confidence regions (intervals). 相似文献
18.
QIN Yong-song LEI Qing-zhu School of Math.Sci. Guangxi Normal Univ. Guilin China. 《高校应用数学学报(英文版)》2008,23(1):113-119
This paper investigates the modified likelihood ratio test(LRT) for homogeneity in normal mixtures of two samples with mixing proportions unknown. It is proved that the limit distribution of the modified likelihood ratio test is X^2(1). 相似文献
19.
We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from , a (p+q)-dimensional multivariate normal population with mean and covariance matrix . On the basis of data consisting of n observations on all p+q characteristics and an additional N−n observations on the last q characteristics, where all observations are mutually independent, denote by the maximum likelihood estimator of . We establish criteria which imply that shrinkage estimators of James-Stein type have lower risk than under Euclidean quadratic loss. Further, we show that the corresponding positive-part estimators have lower risk than their unrestricted counterparts, thereby rendering the latter estimators inadmissible. We derive results for the case in which is block-diagonal, the loss function is quadratic and non-spherical, and the shrinkage estimator is constructed by means of a nondecreasing, differentiable function of a quadratic form in . For the problem of shrinking to a vector whose components have a common value constructed from the data, we derive improved shrinkage estimators and again determine conditions under which the positive-part analogs have lower risk than their unrestricted counterparts. 相似文献
20.
The modified likelihood ratio criterion for testing the homogeneity of variances of p univariate normal populations, and the sphericity test, are both shown in this paper to have a monotone nondecreasing power function. 相似文献