首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 982 毫秒
1.
A series of D ‐π‐A organic dendritic and star‐shaped molecules based on three various chromophores (i.e., the truxene nodes, triphenylamine moieties as the donor, and benzothiadiazole chromophore as the acceptor) and their corresponding model compounds are facilely developed. Their photophysical and electrochemical properties are investigated in detail by UV/Vis absorption and photoluminescent spectroscopy, and cyclic voltammetry. By changing the various conjugated spacers (i.e., single bond, double bond, and triple bond) among the three chromophores of dendritic series, their photophysical properties (that is, the one‐photon absorption range and two‐photon absorption cross‐section values) are effectively modulated. All D ‐π‐A conjugated oligomers show a broad and strong absorption band from 250 to 700 nm in thin films. Solution‐processed bulk‐heterojunction photovoltaic devices using our oligomer as donor and PCBM as acceptor are fabricated and measured. The power conversion efficiency of the devices based on our oligomers continuously increases from DBTTr to TRTD2A as a result of an increasing relative absorption intensity in longer wavelength region by changing the donor‐acceptor ratio and conjugated spacers between the donor and acceptor. The power conversion efficiency of the devices based on TRTD2A was 0.54 % under the illumination of AM 1.5 and 100 mW cm?2, which is the highest value recorded based on D ‐π‐A conjugated oligomers containing triphenylamine moieties and benzothiadiazole chromophores with truxene to date.  相似文献   

2.
The carboxylic acid group is an example of a functional group which possess a good hydrogen‐bond donor (–OH) and acceptor (C=O). For this reason, carboxylic acids have a tendency to self‐assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N‐tosyl‐l ‐proline (TPOH) benzene hemisolvate {systematic name: (2S)‐1‐[(4‐methylbenzene)sulfonyl]pyrrolidine‐2‐carboxylic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen‐bonded carboxylic acid dimer with a strong O—(H)…(H)—O hydrogen bond is observed. The compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene molecule and one TPOH molecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the intermolecular interactions using the noncovalent interaction (NCI) index showed that the TPOH molecules form dimers due to the strong O—(H)…(H)—O hydrogen bond, while the packing of the benzene solvent molecules is governed by weak dispersive interactions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.  相似文献   

3.
Azo-hydrazone tautomerism is a phenomenon that occurs in azo dyes possessing substituents conjugated to the azo linkage which has labile proton that can be exchanged intramolecularly. Thus the predominance of one tautomer over another is a function of many factors among which are solvent polarity, solvent type, solute-solvent interactions and the structure of the dye molecule itself. The 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes, previously shown to exhibit azo-hydrazone tautomerism, were studied for the relative predominance of one form over another based on interaction at the microenvironment of binary solvent mixtures containing DMF and non-hydrogen bonding (CCl(4)), hydrogen bond donor (toluene, chloroform), hydrogen bond acceptor (acetonitrile, acetone) and the alcohols; ethanol and methanol as solvent pairs. The three dyes gave two main bands in the 50:50 mixture of DMF with these solvents consisting of a high energy band at 250-382 nm while the low energy bands for the dyes occurred at 415-485 nm. Spectral shifts in the binary solvent mixtures were related to the solvent dipolarity, basicity of the less polar component relative to DMF, substituent type, molar transition energy, formation constant for the hydrogen-bonding solvated complexes and the standard free energy change for hydrogen bonding with DMF. The relative predominance of the hydrazone tautomer bears a direct relationship to the basicity of the solvent, presence of hydrogen bond donor substituent and was associated with high molar transition energies and low formation constant. The microenvironment surrounding the dye molecules played a major role in the stability of one tautomer relative to the other.  相似文献   

4.
The Raman spectra of a series of push-pull molecules containing probenzenoid or quinoid spacers which are substituted with 1,3-dithiol-2-ylidene as donor and dicyano-methylene or barbituric acid as acceptors have been analyzed. The experimental spectra have been assigned and interpreted according to density functional theory calculations. Correlations between the Raman spectra of the isolated spacers and of the substituted molecules have been done. Raman bands in the 1620-1560 cm-1 interval provide vibrational markers of the quinoid<-->aromatic structural evolution. This finding is supported by a careful inspection of geometrical parameters, namely, bond length alteration data and particular bond distances. As a result, the peak positions and relative intensities of these Raman features can be used to evaluate the benzenoid character of the spacer as a function of the donor/acceptor substitution pattern. This paper shows that Raman spectroscopy is a powerful spectroscopic tool for the analysis of the conjugational properties (i.e., intramolecular donor-->acceptor charge transfer) of new organic materials.  相似文献   

5.
Abstract—
Kinetics of photoinduced electron transfer from a lipid functionalized pyrene, 1-(10-(6(8)-octadecylpyrenyl)decanoyl)-2-hexanoyl-.sn-glycero-3-phosphorylcholine (OPyPC), to a two component viologen acceptor system have been measured by laser flash photolysis. N, N'-tetramethylene-2,2'-bi-pyridinium ion (DQ2+) and N, N' -dipropyl-4,4'-bipyridinium sulfonate (PVS), have been utilized as the primary and secondary acceptors. It has been shown that utilization of a lipid with a net negatively charged phosphatidylglycerol headgroup provides a driving force for localizing high concentrations of primary acceptor (DQ2+) in the region of donor. Subsequently, the charged interface can act to maintain long-term separation between the oxidized pyrene donor (OPyPC+) and the reduced secondary acceptor, PVS-. When a dioleoyl lipid is used, reaction of (OPyPC+) with the double bond competes significantly with back reaction. However, substitution of diphytylphosphatidylglycerol for the dioleoyl analog results in a cation lifetime of about 0.5 ms and a continued very long-lived reduced species (˜4 h). Quantum yields of ˜0.15 may be obtained in this system.  相似文献   

6.
研究了两个低聚核糖核苷酸的3′-端磷酸化方法.以3′-端带磷酸单酯的低聚核苷酸为供体,用T_4 RNA连接酶将AUUC,CGGA,CUCGUCCA和CCAp等按低的供受体摩尔配比(1∶1.1至1∶2),以87~90%的连接率合成了相应于酵母丙氨酸转移核糖核酸3′-端53~76核苷酸顺序的十九核苷酸AUUCCGGACUCGUCCACCAp.  相似文献   

7.
The theoretical interpretation of electron donor-acceptor complex formation in terms of charge transfer interactions has stimulated many structure determinations for these complexes. These fall into three classes, depending on the type of orbitals involved in charge transfer. In σ-σ complexes, intermolecular bonds become shorter and intramolecular bonds become longer as charge transfer increases. Relative orientations correspond to overlap of donor and acceptor molecules in directions of “preferred polarizability”. Intermolecular bond lengths in σ-π complexes show similar trends, and the axial orientation in the benzene-halogen complexes is probably the result of the best compromise between orbital overlap and energy factors. π-π Complexes contain stacks of alternate plane-to-plane donor and acceptor molecules, arranged in three characteristic ways. There is little correlation between interplanar spacing in these stacks and charge transfer properties. The relative orientations of donor and acceptor molecules within the stacks are determined by a combination of charge transfer interactions (maximized when aromatic rings of donor and acceptor molecules are displaced by half a ring diameter) and dipole-induced dipole interactions (maximized, for example, when a polar bond of one molecule overlaps a polarizable region of another). Crystal packing requirements and dispersion forces modify these effects, and no satisfactory theoretical treatment of this complex combination of interactions is yet available.  相似文献   

8.
Spherical magnetite nanoparticles (MNPs, ~ 24 nm in diameter) were sequentially functionalized with trimethoxysilylpropyldiethylenetriamine (TMSPDT) and a synthetic DNA intercalator, namely, 9-chloro-4H-pyrido[4,3,2-kl]acridin-4-one (PyAcr), in order to promote DNA interaction. The designed synthetic pathway allowed control of the chemical grafting efficiency to access MNPs either partially or fully functionalized with the intercalator moiety. The newly prepared nanomaterials were characterized by a range of physicochemical techniques: FTIR, TEM, PXRD, and TGA. The data were consistent with a full surface coverage by immobilized silylpropyldiethylenetriamine (SPDT) molecules, which corresponds to ~22,300 SPDT molecules per MNP and a subsequent (4740-2940) PyAcr after the chemical grafting step (i.e., ~ 2.4 PyAcr/nm(2)). A greater amount of PyAcr (30,600) was immobilized by the alternative strategy of binding a fully prefunctionalized shell to the MNPs with up to 16.1 PyAcr/nm(2). We found that the extent of PyAcr functionalization strongly affects the resulting properties and, particularly, the colloidal stability as well as the surface charge estimated by ζ-potential measurement. The intercalator grafting generates a negative charge contribution which counterbalances the positive charge of the single SPDT shell. The DNA binding capability was measured by titration assay and increases from 15 to 21.5 μg of DNA per mg of MNPs after PyAcr grafting (14-20% yield) but then drops to only ~2 μg for the fully functionalized MNPs. This highlights that even if the size of the MNPs is obviously a determining factor to promote surface DNA interaction, it is not the only limiting parameter, as the mode of binding and the interfacial charge density are essential to improve loading capability.  相似文献   

9.
Neutral pi-conjugated molecules and their radical cations co-exist in [(EDT-TTF-CONHMe+*)4(EDT-TTF-CONHMe0)2] [Re6Se8(CN)6]4- (CH3CN)2(CH2Cl2)2 whose crystal structure reveals that, upon one-electron oxidation, an activation of the N-H and C-H hydrogen bond donor ability is coupled to a deactivation of the hydrogen bond acceptor character of the carbonyl oxygen atom: this is expressed in the supramolecular hydrogen bond pattern and, ultimately, into charge localisation and partition in the solid state.  相似文献   

10.
We explored surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes as potential templates for protein immobilization. The brushes were grown using atom transfer radical polymerization from surface-anchored initiators and characterized by a combination of ellipsometry, atomic force microscopy, and X-ray photoelectron spectroscopy. RNase A was immobilized as a model enzyme through the nucleophilic attack of azlactone by the amine groups in the lysines located in the protein. The surface density of RNase A increased linearly from 5 to 50 nm. For 50 nm thick poly(2-vinyl-4,4-dimethyl azlactone) brushes, 7.5 microg/cm2 of RNase A was bound. The kinetics and thermodynamics of RNase A immobilization, the activity relative to surface density, and the pH and temperature dependence were examined. A Langmuir-like model for binding kinetics indicates that the kinetics are controlled by the rate of adsorption of RNase A and has an adsorption rate constant, k(ads), of 2.8 x 10(-8) microg(-1) s(-1) cm3. A maximum relative activity of approximately 0.95, which is near the activity of free RNase A, was reached at 1.2 microg/cm2 (approximately 3.0 monolayers) of immobilized RNase A. The immobilized RNase A had a similar temperature and pH dependence as free RNase A, indicating no significant change in conformation. The PVDMA template was extended to other biotechnologically relevant enzymes, such as deoxyribonuclease I, glucose oxidase, glucoamylase, and trypsin, with relative activities higher than or comparable to those of enzymes immobilized by other means. PVDMA brushes offer an efficient route to immobilize proteins via the ring opening of azlactone without the need for activation or pretreatment while retaining high relative activities of the bound enzymes.  相似文献   

11.
Izgu EC  Burns AC  Hoye TR 《Organic letters》2011,13(4):703-705
Various functionalized steroidal side chains were conveniently accessed by a modified Julia olefination strategy using a common sulfone donor and an appropriate α-branched aldehyde acceptor. For the coupling of these hindered classes of reaction partners (and in contrast to typically observed trends), the benzothiazolyl(BT)-sulfone anion gave superior outcomes compared to the phenyltetrazolyl(PT)-sulfone anion.  相似文献   

12.
This paper demonstrates a Schiff base i. e. 5-(diethylamino)-2-((2,6-diethylphenylimino)methyl)phenol (5-DDMP) that was sensed by DNA biosensor. dsDNA was immobilized onto GCE modified with functionalized multi-walled carbon nanotubes to prepare a biosensor. The efficiency of dsDNA biosensor was determined and binding of 5-DDMP with dsDNA was searched by UV-vis spectrophotometry and differential pulse voltammetry. Molecular docking simulations between 5-DDMP and dsDNA were explored and as a result, a hydrogen bond and a π-π contact were observed between 5-DDMP and deoxyguanosine base (dG22) of the strand B, deoxyadenosine base (dA5) of the strand A, respectively. These studies could be useful for new anticancer drug design and development.  相似文献   

13.
Rate constants, kA, for the aromatic nucleophilic substitution reaction of 2‐chloro‐3,5‐dinitropyridine with aniline were determined in different compositions of 1‐(1‐butyl)‐3‐methylimidazolium terafluoroborate ([bmim]BF4) mixed with water, methanol, and ethanol at 25°C. The obtained rate constants of the reaction in pure solvents are in the following order: water > methanol > ethanol > [bmim]BF4. In these solutions, rate constants of the reaction decrease with the mole fraction of the ionic liquid. Single‐parameter correlations of log kA versus normalized polarity parameter (E), hydrogen bond acceptor basicity (β), hydrogen bond donor acidity (α), and dipolarity/polarizability (π*) do not give acceptable results in all solutions. Dual‐parameter correlations of log kA versus E and β also α and β gave reasonable results (e.g., in solutions of water with [bmim]BF4, the correlation coefficients are 0.994 and 0.996, respectively). The proposed dual‐parameter models demonstrate that the reaction rate constant increases with E, β, and α. The increase in the rate constant is attributed to hydrogen‐bonding interactions (donor and acceptor) of the media with an activated complex of the reaction that has the zwitterionic character. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 681–687, 2007  相似文献   

14.
Multichromophore arrays of bis(2‐thienyl)diketopyrrolopyrrole (DPP) and naphthalenediimide (NDI) with two ZnII‐cyclens were constructed using thymidine DNA as a scaffold through the binding of the ZnII‐cyclens with thymine bases. We demonstrate photocurrent generation in a donor–acceptor heterojunction configuration consisting of the DPP (donor) and NDI (acceptor) arrays co‐immobilized on an Au electrode. The co‐immobilized electrode exhibited good photocurrent responses because of the efficient charge separation between the DPP and NDI arrays. In contrast, an immobilized electrode consisting of randomly assembled DPP‐NDI arrays generated no photocurrent response because DPP formed ground‐state charge‐transfer complexes with NDI in the randomly assembled arrays. Therefore, our approach to generate donor–acceptor heterojunctions based on DNA–multichromophore arrays is a useful method to efficiently generate photocurrent.  相似文献   

15.
We present a simple increment model for use in the rapid scoring of hydrogen bond strengths employing 15 chemically diverse donor and 28 acceptor terms. The increments cover a large variety of hydrogen bond donor and acceptor groups and are more specific than SYBYL atom types. The increments have been fitted to quantum chemical ab initio interaction energies of 81 small hydrogen‐bonded complexes determined at the level of second‐order Møller‐Plesset perturbation theory (MP2). The complexes have been chosen such as to represent the most important types of donor‐acceptor pairs found in biological systems. Sulphur is found to be a strong hydrogen bond acceptor while its donor capacities are weak. By taking CH acidic H donors into account, a linear correlation between MP2 energies and the increment model with a coefficient of correlation of r2 = 0.994 has been accomplished. The transferability of the fitted parameters has been assessed on a second set of complexes including larger molecules of biological relevance. Very good agreement has been achieved for noncyclic hydrogen bonds. Cooperative effects are not accounted for by the current increment model. For this reason, binding energies of strong cyclic hydrogen bonds, as e.g. present in DNA base pairs, are underestimated by about 30–40%. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007  相似文献   

16.
Hydrogen-bonded blends based on smectic comb-shaped functionalized LC copolymers containing alkyloxy-4-hydroxybenzoic acid fragments (proton donor) and the low molecular weight dopant 4-(4-pyridyloyl)cyanobenzoate (proton acceptor) were obtained. It was observed that blends containing 10–25 mol-% of low molecular weight dopants form a reentrant nematic phase (SmA-RN-SmA-I). The blend behavior in the magnetic field was studied, and the orientational elastic constants of the RN phase were determined.  相似文献   

17.
A series of geminal diethynylethenes (g‐DEEs) with electron‐donating and/or electron‐accepting (D/A) groups were synthesized via a Pd‐catalyzed cross‐coupling sequence. The UV/VIS spectra for donor–acceptor (D–A) functionalized g‐DEEs 5, 8 , and 11 show distinctive absorption trends attributable to intramolecular charge‐transfer (ICT). The bond‐length‐alternation (BLA) index for the cross‐conjugated enediyne framework varies slightly with different terminal substituents as determined by density‐functional theory (DFT) calculations and single‐crystal X‐ray analysis. Ultrafast third‐order optical nonlinearities for the g‐DEEs were measured by the differential optical Kerr effect (DOKE) technique and show that terminal donor–acceptor substitution of g‐DEEs enhances molecular second hyperpolarizabilities (γ) in comparison to donor or acceptor g‐DEEs. A small increase in the two‐photon‐absorption cross‐section (σ(2)) is observed in the series 9 – 11 as a result of increased functionalization. The effects of donor/acceptor substitution on electron delocalization along the cross‐conjugated enediyne structure are evaluated on the basis of natural‐bond‐orbital (NBO) analysis. Solid‐state structures of the four derivatives 3b, 4b, 7 and 8 were characterized by single‐crystal X‐ray structural analysis and show an asymmetric unit cell for one derivative, D–A g‐DEE 8 .  相似文献   

18.
A novel donor–acceptor‐type polymer with a low band‐gap that alternates electron‐rich thienylenevinylene groups with electron‐deficient diketopyrrolopyrrole (DPP) units (PETVTDPP) has been synthesized by Pd‐catalyzed Stille cross‐coupling polymerization. The polymer shows a broad absorption band of wavelengths that range from 330 to 900 nm, and a low band‐gap value of 1.43 eV. The field‐effect mobility of an organic thin‐film transistor based on this polymer is 0.05 cm2 · Vs−1. Bulk‐heterojunction solar cells using a mixture of PETVTDPP and PC[71]BM for the active layer show a power conversion efficiency (PCE) of 1.94% under simulated AM 1.5 G solar irradiation at 100 mW · cm−2.

  相似文献   


19.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T,BT-8T,FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC61BM和FFBT-8T/PC61BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

20.
Previous investigation of transfer of electron density accompanying hydrogen bond formation has been extended to complexes between positively charged donors and neutral acceptors, as well as to the complexes between a neutral donor and a negatively charged acceptor molecules. The amount of transferred electron density from acceptor to donor for the charged complexes may be adequately described by the same exponential dependence on the equilibrium distance between the hydrogen atom and the nearest atom of the acceptor molecule as it was found for neutral complexes. Relation of the H‐bond energy to electron density at the H‐bond critical point was dependent on the sign of Laplacian of the electron density. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号