首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state and time-resolved photoluminescence have been used to investigate the optical properties of bilayer and blend films made from poly(9,9-dioctyl-fluorene-2,7-diyl) (PFO) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV). Energy transfer has been observed in both systems. From steady-state photoluminescence measurements, the energy transfer was characterized by the effective enhancement of the MEH PPV emission intensity after exciting the donor states. Relatively faster decays for the PFO donor emission have been observed in the blends as well as in the bilayer structures, confirming effective energy transfer in both structures. In contrast to the bilayers, the time decay of the acceptor emission in the blends presents a long decay component, which was assigned to the exciplex formation in these samples. For the blends the acceptor emission is in fact a composition of exciplex and MEH PPV emissions, the later being due to Fo?rster energy transfer from PFO. In the bilayers, the exciplex is not observed and temperature dependence photoluminescence measurements show that exciton migration has no significant contribution to the energy transfer. The efficiency and very long range of the energy transfer in the bilayers is explained assuming a surface-surface interaction geometry where the donor/acceptor distances involved are much longer than the common Fo?rster radius.  相似文献   

2.
《Chemical physics letters》1999,291(3-4):173-180
We report the synthesis and characterization of multi-layered organic superlattices made by polyelectrolyte self-assembly. Self-assembled films were formed from a water-soluble form of poly(phenylene vinylene) with high-photoluminescence quantum efficiency (QE). We observed a self-quenching of the luminescence with increasing film thickness. This quenching can be reversed by inserting spacer layers between each active conjugated layer. A red shift of the luminescence was also observed as additional poly(phenylene vinylene) layers were added. We attribute the red shift and increasing QE to changing polymer conformation, together with efficient unidirectional energy transfer. We rule out quantum confinement as the origin of the red shift.  相似文献   

3.
4.
5.
Fluorescence resonance energy transfer in conjugated polymer composite materials was exploited for the detection of gamma ray dosage with high sensitivity and response linearity.  相似文献   

6.
Narrow band gap conjugated polymer zwitterions (CPZs) were synthesized by Suzuki polymerization and characterized to understand their electronic properties and utility as cathode modification layers in solar cells. The polymers were prepared from diketopyrrolopyrrole (DPP) and iso-indigo monomers containing sulfobetaine (SB) pendant groups, benefiting from an ion-rich aqueous phase in the polymerizations. UV–vis absorption spectroscopy revealed the optical energy gap value for the CPZs, ranging from 1.7 to 1.2 eV. Ultraviolet photoelectron spectroscopy of the CPZs as thin layers on Ag metal showed that the pendent zwitterions impart an interfacial dipole (Δ) to the metal and a work function reduction of ∼0.9 eV. OPVs fabricated using a conventional bulk heterojunction (BHJ) device architecture of ITO/PEDOT:PSS/(PTB7:PC71BM)/CPZ/Ag led to dramatic improvements in power conversion efficiency (PCE) values relative to devices having bare Ag cathodes (PCE < 2% for bare Ag vs. 6.7–7.7% for CPZ/Ag). The benzothiadiazole (BT)/DPP polymer denoted as PT2BTDPPSB gave an optimal PCE of 7.7% in a conventional BHJ OPV device architecture fabricated on a Ag cathode. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 327–336  相似文献   

7.
This review covers recent advances in conjugated polymers and their application in energy storage. Conjugated polymers are promising cost-effective, lightweight, and flexible electrode materials. The operating principles of conjugated polymers are presented within the framework of their potential for energy storage. Special focus is given to polyaniline electrodes. Recent advances are reviewed including new methods of synthesis, nanostructuring, and assembly. Also, covered are applications that take full advantage of the mechanical properties of conjugated polymers and future applications of these novel materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

8.
The development of methods for DNA detection is of importance in disease diagnosis, gene-targeted drug discovery and molecular biology field. In this paper, we synthesize a new cationic water-soluble CP containing fluorene moiety and flexible ethylenic moiety in the backbone (PFV) for label-free DNA detection. The conformational freedom of PFV provides stronger interactions with double-stranded DNA (dsDNA) and optimizes the orientation of transition moments between PFV and ethidium bromide (EB) intercalated in dsDNA. The efficient FRET from PFV (donor) to EB (acceptor) intercalated in dsDNA is observed and the emission of EB is amplified by the good light-harvesting ability of conjugated polymers. The interactions between PFV and DNA can also be probed by measuring the FRET ratio between PFV and EB intercalated in DNA. In comparison to other DNA detection assays based on FRET and conjugated polymers, synthesis of dye-labeled DNA probe is avoided in our method, which significantly reduces the cost and the synthetic complexity. The PFV/dsDNA/EB system provides promising applications on DNA detection with a simply, fast and label-free manner.  相似文献   

9.
To examine the quenching of a triplet exciton by low triplet energy (E(T)) polymer hosts with different chain configurations for high E(T) phosphor guests, the quenching rate constant measurements were carried out and analyzed by the standard Stern-Volmer equation. We found that an effective shielding of triplet energy transfer from a high E(T) phosphor guest to a low E(T) polymer host is possible upon introducing dense side chains to the polymer to block direct contact from the guest such that the possibility of Dexter energy transfer between them is reduced to a minimum. Together with energy level matching to allow charge trapping on the guest, high device efficiency can be achieved. The extent of shielding for the systems of phenylene-based conjugated structures from iridium complexes follows the sequence di-substituted (octoxyl chain) in the para position (dC8OPPP) is greater than monosubstituted (mC8OPPP) and the PPPs with longer side chains are much higher than a phenylene tetramer (P4) with two short methyl groups. Further, capping the dialkoxyl-susbstituents with a carbazole (Cz) moiety (CzPPP) provides enhanced extent of shielding. Excellent device efficiency of 30 cd/A (8.25%) for a green electrophosphorescent device can be achieved with CzPPP as a host, which is higher than that of dC8OPPP as host (15 cd/A). The efficiency is higher than those of high E(T) conjugated polymers, poly(3,6-carbazole) derivatives, as hosts (23 cd/A). This observation suggests a new route for molecular design of electroluminescent polymers as a host for a phosphorescent dopant.  相似文献   

10.
The dynamics of fluorescence quenching of a conjugated polyelectrolyte by a cyanine dye are investigated by femtosecond fluorescence up-conversion and polarization resolved transient absorption. The data are analyzed with a model based on the random walk of the exciton within the polymer chain and a long-range direct energy transfer between polymer and dye. We find that rapid intrachain energy migration toward complex sites with the dye leads to the highly efficient energy transfer, whereas the contribution from direct, long-range energy transfer is negligible. We determine the actual density of complexes with the dye along the polymer chain. A clear deviation from calculations based on a constant complex association constant is found and explained by a reduced effective polymer concentration due to aggregation. Altogether, the quenching efficiency is found to be limited by (i) the energetic disorder within the polymer chain and (ii) the formation of loose polymer aggregates.  相似文献   

11.
In order to understand exciton migration and fluorescence intensity fluctuation mechanisms in conjugated polymer single molecules, we studied fluorescence decay dynamics at "on" and "off" fluorescence intensity levels with 20 ps time resolution using MEH-PPV [poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] dispersed in PMMA. Two types of intensity fluctuations were distinguished for single chains of conjugated polymers. Abrupt intensity fluctuations (blinking) were found to be always accompanied by corresponding changes in fluorescence lifetime. On the contrary, during "smooth" intensity fluctuations no lifetime change was observed. Time-resolved data in combination with data on fluorescence emission and excitation anisotropy lead to a picture where a single polymer molecule is seen as consisting of several energy transfer domains. Exciton migration is efficient within a domain and not efficient between domains. Each domain can have several emitting low-energy sites over which the exciton continuously migrates until it decays. Emission of individual domains is often highly polarized. Fluorescence from a domain can be strongly quenched by Forster energy transfer to a quencher (hole polaron) if the domain overlaps with the quenching sphere.  相似文献   

12.
We present the detection of the shape-specific conformation of DNA based on the fluorescence resonance energy transfer (FRET) by using a novel flexible water-soluble cationic conjugated polymer (CCP). The flexible backbone of CCP has more conformational freedom with the potential to be responsive to analyte shape by electrostatic interaction between flexible CCP and negatively charged DNA. The analyte shape dependent recognition is accomplished by structural changes that compressed or extended the flexible CCP. The morphology-dependent spectral properties of the novel flexible polymer related to the analyte shapes are investigated in detail, where two types of chromophores, referred to as "isolated" segment and "packed" segment aggregates, within the flexible polymer are identified by means of ensemble and single molecule measurements upon binding with different geometric DNA. The change in fluorescence intensity upon binding with shape-specific DNA without obvious color shifts makes this novel flexible polymer a suitable CCP donor for FRET measurements. The results provide insights for understanding the spectral properties of flexible water-soluble CCP and CCP/DNA interaction related to the geometry of target analyte.  相似文献   

13.
Magnesium vinyl-copper derivatives, obtained by carbocupration of terminal alkynes, couple with 1-halo-1-alkenes, in the presence of Pd(PPh3)4 catalyst, to afford polysubstituted conjugated dienes in high yield and excellent stereoisomeric purity.  相似文献   

14.
Intramolecular energy transfer is investigated in an endcapped conjugated polymer on the single molecule level at low temperature. While light harvesting in one dimension is on average inefficient in the ensemble, the efficiency scatters widely on the single molecule level, with some molecules exhibiting near-unity transfer probability from the polymer backbone donor to the acceptor endcap. This transfer occurs in the absence of spectral overlap between donor and acceptor, as the electronic and vibronic transitions narrow substantially at low temperatures once inhomogeneous disorder broadening is overcome. The results illustrate how far-field absorption and emission characteristics of molecular transitions are insufficient to describe resonant energy transfer processes following F?rster theory in multichromophoric aggregates. Rather, exciton trapping due to efficient multiphonon emission has to be invoked with a possible contribution of strong polaronic coupling.  相似文献   

15.
With tunable local electronic environment,high mass density of MN4 sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu2+ and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More i...  相似文献   

16.
We report here a novel system where the rate of energy transfer is based on changes in the spectral overlap between the emission of the donor and the absorption of the acceptor (J) as well as changes in the quantum yield of the acceptor. We use the fluorophore dansyl as the donor and polydiacetylene (PDA) as the acceptor to demonstrate the modulation of FRET through conformationally induced changes in the PDA absorption spectrum following thermal treatment that converts the PDA backbone of the liposome from the blue form to the red form. Energy transfer was found to be significantly more efficient from dansyl to the red-form PDA. These findings support the basis of a new sensing platform that utilizes J-modulated FRET as an actuating mechanism.  相似文献   

17.
Emphasizing dissociation, the energy transfer Δ? to a diatomic Morse oscillator in state n by collision with an atom is treated in a one-dimens  相似文献   

18.
The generation of white light requires the combination of two or more chromophores that emit simultaneously. The observed color of a mixture of light-emitting molecules, however, originates generally only from the lowest band-gap species because of efficient energy transfer between the chromophores which is difficult to avoid. Here we report on a nanocomposite material designed to yield pure and stable white photo- and electroluminescence. In this material, red, green, and blue emitting conjugated polymers are confined within the galleries of a layered semiconducting host matrix. The host hinders polymer pi-pi interactions which are responsible for the energy transfer between polymer chains, consequently, emission from the three chromophores is observed simultaneously resulting in white photoluminescence. The efficacy of the nanocomposites is demonstrated in simple single-layer white-emitting polymer diodes. The mechanism suggested here for white light generation, supported by extensive luminescence measurements, is in contrast to that previously reported in white-emitting polymer diodes where efficient energy transfer between polymer chains was essential for obtaining white light.  相似文献   

19.
The authors present here a simple analysis that explains the apparent strengthening of electron phonon interaction upon aggregation in conjugated polymer materials. The overall scheme is that of an intermolecular Herzberg-Teller effect whereby sidebands of a forbidden transition are activated by oppositely phased vibrations. The authors show that upon aggregation, the 0-0 emission becomes symmetry forbidden and the apparent redshift and remaining vibronic structure are due to sideband (0-1,0-2, etc.) emission. At higher temperatures, the 0-0 peak is due to thermal population in a higher lying even-parity vibronic state rather than direct emission from the odd-paritied lowest intermolecular vibronic state.  相似文献   

20.
Zhang X  Xiao Y  Qian X 《Organic letters》2008,10(1):29-32
A light-harvesting system containing three kinds of BODIPY fluorophores was synthesized. It exhibited very strong absorption in the region from 300 to 700 nm, and the energy transfer within it was highly efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号