首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前液相色谱串联质谱法测定动物源性食品中瘦肉精普遍采用酶水解提取、固相萃取净化的方式处理样品,该方法耗时长、分析成本高。 本研究采用酸水解和酶水解两种提取方式结合QuEChERS(Quick,Easy,Cheap,Effective,Rugged,Safe)净化和高效液相色谱串联质谱建立了动物性食品中特布他林、沙丁胺醇、莱克多巴胺和克伦特罗4种β2受体激动剂的快速定性确证和定量检测方法。 采用酶水解提取-QuEChERS净化处理样品,在电喷雾离子源正离子扫描(ESI+)和多反应监测(MRM)模式下,4种瘦肉精在1.0~20.0 μg/L浓度之间呈线性,线性相关系数均大于0.999,检出限和定量限分别为0.1和0.3 μg/kg,猪肉和牛肉样品中4种化合物的回收率为78.5%~112%,相对标准偏差RSD为2.8%~8.9%。 采用酸水解法代替酶水解提取时,尽管对于样品中莱克多巴胺测定结果稍偏低,但样品前处理时间大大缩短。 两种提取方法结合使用对于提高瘦肉精引起的食物中毒应急处置效率具有重要意义。  相似文献   

2.
邱巧丽  陈晓红  潘胜东  金米聪 《色谱》2022,40(7):669-676
建立了基于通过型固相萃取小柱净化的超高效液相色谱-三重四极杆质谱联用(UPLC-MS/MS)同时快速准确测定牛蛙中9种雌激素(雌三醇(E3)、17β-雌二醇(β-E)、17α-雌二醇(α-E)、17α-炔二雌醇(EE2)、雌酮(EI)、己烯雌酚(DES)、己二烯雌酚(DE)、己烷雌酚(HEX)、醋酸双烯雌酚(DD))残留的检测方法。样品经乙腈提取,经PRiME HLB固相萃取柱净化,Waters Acquity UPLC BEH C_(18)柱(100 mm×2.1 mm,1.7μm)分离,以0.5 mmol/L氟化铵水溶液-乙腈体系为流动相梯度洗脱,流速为0.3 mL/min,采用电喷雾正负离子切换模式(ESI^(+)/ESI^(-))和多反应监测(MRM)扫描方式检测,基质匹配外标法定量分析。该研究优化了液相色谱条件,相比于乙酸铵水溶液-乙腈体系和氨水溶液-乙腈体系,0.5 mmol/L氟化铵水溶液-乙腈体系作为流动相时9种雌激素普遍具有更佳的灵敏度。相比于甲醇和乙酸乙酯,乙腈作为提取溶剂时9种雌激素的提取率提高15%~40%。考察了HLB、C_(18)、Silica、PRiME HLB共4种不同类型的固相萃取小柱的基质净化效应,结果表明,PRiME HLB柱具有更好的基质净化能力。经PRiME HLB净化后,所有化合物的回收率均在70%~125%之间。DD的回收率从47%提高到74%,DES的回收率从180%降低到123%,有效减弱了基质效应。在最佳的实验条件下,E3、β-E、α-E、EI、DE、HEX、DD的线性范围为0.5~100.0μg/L,EE2和DES的线性范围为1.0~100.0μg/L,9种雌激素在各自的线性范围内均有良好的线性关系,相关系数为0.9953~0.9994,方法检出限为0.17~0.33μg/kg,方法定量限为0.5~1.0μg/kg,在2.0、10.0、80.0μg/kg 3个加标水平下,9种雌激素的加标回收率为65.1%~128.2%,相对标准偏差为1.9%~17.6%。该方法操作简便、快速、灵敏,重复性好,可用于大批量样品的同时快速准确检测。  相似文献   

3.
Pyrolysis of a solution of {Ru3(CO)11}2(μ-bdpp) (bdpp = bis(diphenylphosphino)butadiyne) yielded the complex {Ru3(μ-PPh2)(CO)9}26-C4), which contains a μ6-C4 ligand symmetrically bridging two Ru3(μ-PPh2)(CO)9 clusters. When the complex {Fe(CO)4}2(μ-bdpp) was heated in the presence of Fe2(CO)9 another example of a C4 complex, {Fe2(μ-PPh2)(CO)6}2(μ-C4), was obtained. Both complexes were characterised by X-ray structure determinations; the C4 ligand behaves as a buta-1,3-diyne-1,4-diyl system.  相似文献   

4.
A detailed in situ 13C and 1H NMR spectroscopic characterization of the following families of alkylperoxo complexes of titanium is presented: Ti(η2-OOtBu)n(OiPr)4−n, where n = 1–4; binuclear complexes [(iPrO)3Ti(μ-OiPr)2Ti(OiPr)22-OOtBu)] and [(η2-OOtBu)(iPrO)2Ti(μ-OiPr)2Ti(OiPr)22-OOtBu)]; complexes with β-diketonato ligands: Ti(LL)2(OEt)(η2-OOtBu), Ti(LL)2(OiPr)(η2-OOtBu), Ti(LL)22-OOtBu)2, Ti(LL)2(OtBu)(η1-OOtBu), where HLL = acetylacetone, dipivaloylmethane. These alkylperoxo complexes could not be isolated due to their instability and were studied in situ at low temperatures. Whereas the side-on (η2) coordination mode of tert-butylperoxo ligand is generally preferable, the end-on (η1) coordination caused by spatial hindrance from surrounding bulky ligands is found in two cases. The quantitative data on the reactivity of alkylperoxo complexes found towards sulfides and alkenes were obtained. The system TiO(acac)2/tBuOOH in C6H6 was reinvestigated using 13C and 1H NMR spectroscopy. The structure of the complex Ti(acac)2{CH3C(O)(OOtBu)COO} actually formed in this system was elucidated. Four types of titanium(IV) alkylperoxo complexes were detected in the Sharpless–Katsuki catalytic system using 13C NMR spectroscopy.  相似文献   

5.
Reactions of Co33-CBr)(μ-dppm)(CO)7 with {Au[P(tol)3]}2{μ-(CC)n} (n=2–4) have given {Co3(μ-dppm)(CO)7}{μ33-C(CC)nC} [n=2 (1), 3 (2), 4 (3)] containing carbon chains capped by the cobalt clusters. Tetracyanoethene reacts with 2 to give {Co3(μ-dppm)(CO)7}233-C(CC)2C[=C(CN)2]C[=C(CN)2]C} (4). X-ray structural characterisation of 1, 3 and 4 are reported, that for 3 being the first of a cluster-capped C10 chain.  相似文献   

6.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   

7.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

8.
An effective purification of carrier gas from trace amounts of oxygen and a simple determination of trace amounts of oxygen in unreactive gases have been achieved with the use of the catalysts Pt/γ-Al203 and Pd/γAl2O3.  相似文献   

9.
Polycrystalline octa-nuclear copper(I) O,O′-di-i-propyl- and O,O′-di-i-amyldithiophosphate cluster compounds, {Cu8[S2P(OR)2]68-S)} where R = iPr and iAm, were synthesized and characterized by 31P CP/MAS NMR at 8.46 T and static 65Cu NMR at multiple magnetic field strengths (7.05, 9.4 and 14.1 T). The symmetries of the electronic environments around the P sites were estimated from the 31P chemical shift anisotropy (CSA) parameters, δaniso and η. Analyses of the 65Cu chemical shift and quadrupolar splitting parameters for these compounds are presented with the data being compared to those for the analogous octa-nuclear cluster compounds with R = nBu and iBu. The 65Cu transverse relaxation for the copper sites in {Cu8[S2P(OiPr)2]68-S)} and {Cu8[S2P(OiAm)2]68-S)} was found to be very different, with a relaxation time, T2, of 590 μs (Gaussian) and 90 μs (exponential), respectively. The structures of {Cu4[S2P(OiPr)2]4} and {Cu8[S2P(OiPr)2]68-S)} cluster compounds in the liquid- and the solid-state were studied by Cu K-edge EXAFS. The disulfide, [S2P(OiAm)2]2, was obtained and characterized by 31P{1H} NMR. The interactions of the disulfide and of the potassium O,O′-di-i-amyldithiophosphate salt with the surfaces of synthetic chalcocite (Cu2S) were probed using solid-state 31P NMR spectroscopy and only the presence of copper(I) dithiophosphate species with the {Cu8[S2P(OiAm)2]68-S)} structure was observed.  相似文献   

10.
Octa ethyl biliverdin (OEBV) has been employed as a model for natural biliverdin and its geometry has been optimized by using semiempirical (AM1, PM3), DFT, and hybrid ONIOM methods. Geometries and energetics of formation of octa ethyl bilirubin (OEBR) formed by reduction from OEBV via three carbon sites β, γ, and δ have been obtained. It has been shown that γ-OEBR has two configurational isomers (named γ1 and γ2), which can convert to each other by internal 1,5-hydrogen shift. The results show that, within the accuracy level of semiempirical methods, all three isomers namely, β, γ1, and δ-OEBR are of similar stability whereas, at higher level of theory, γ1-OEBR is less stable than others. Moreover, γ2-isomer with one more of its pyrrole rings being aromatic can achieve a higher symmetry, and is the most stable among others by at least 5–6 kcal mol−1 based on various methods employed. It is interesting to note that the ridge-tile conformation, which has been confirmed for natural bilirubin was not observed for calculated geometries of γ1- and γ2-isomers. A conformational analysis show that an energy barrier of 25 kcal mol−1 must be surmounted for γ2 to obtain the ridge-tile geometry.

OEBV was synthesized and purified from octa ethyl porphyrin iron (III) chloride, and was reduced to OEBR by sodium borohydride (NaBH4). Chemical reduction of OEBV with NaBH4 was followed in CDCl3 and CD3OD solutions and the product was characterized by 1H NMR and UV–Vis spectroscopy. The results show that γ2-isomer as the major product, forms along with γ1 via an equilibrium tautomerization reaction.  相似文献   


11.
A structural study of odd-numbered n-alkane (Cn) binary mixtures (C21 : C23) was carried out on powder samples using a Guinier-de Wolff camera with increasing concentration of n-C23 at 293 K.

Despite the reports in the literature, these molecular alloys do not form an orthorhombic continuous homogeneous solid solution to C21 from C23 at “low temperature”. Instead, as already observed in two even-numbered Cn systems, X-ray diffraction results show the existence of seven solid solutions as the molar concentration of C23 increases: four terminal solid solutions, denoted β0(C210(C23), isostructural with the “low temperature” phase of pure C21 and C23 (Pbcm), β′0(C21) and β′0(C23), identical to the phase β′0 which appears in pure C23 above the δ transition, and three orthorhombic intermediate solid solutions, designated β″1, β′1 and β″2.

On the basis of powder X-ray photographs, the phases β″1 and β″2 (C21 : C23) are indistinguishable, and they are isostructural with the intermediate solid solution β″ of the even-numbered Cn binary systems (C22 : C24) and (C24 : C26). The phase β′1(C21 : C23) is also isostructural with the two indistinguishable intermediate solid solutions β′1 and β′2 of the molecular alloys (C22 : C24) and (24 : C26).

From this study and our other laboratory results, the sequences of appearance of the solid solutions and the structural identities between these phases are established at “low temperature” for all the binary molecular alloys of consecutive Cn (odd-odd, even-even or odd-even: 19 < n < 27) when increasing the solute concentration.  相似文献   


12.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

13.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

14.
Reaction of [Ru3(CO)12 with (CF3)2P---P(CF3)2 in p-xylene at 140°C yielded the compounds [Ru4(CO)13{μ-P(CF3)2}2] (1), [Ru4(CO)14{μ-P(CF3)2}2] (2) and [Ru4(CO)11{μ-P(CF3)2}4] (3). Reaction with [(μ-H)4Ru4(CO)12] under similar conditions yielded [(μ-H)3Ru4(CO)12{μ-P(CF3)2}] (4). All four compounds have been characterised by X-ray crystallography. The fluxional behaviour of the hydrides in 4 has also been studied by variable-temperature NMR spectroscopy. Compounds 1, 2 and 4 were also obtained from the reactions of Ru3(CO)12 with (CF3)2PH in dichloromethane at 80°C.  相似文献   

15.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

16.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

17.
Rui Yang  Yu Gong  Mingfei Zhou   《Chemical physics》2007,340(1-3):134-140
The reaction products of palladium atoms with molecular oxygen in solid argon have been investigated using matrix isolation infrared absorption spectroscopy and quantum chemical calculations. In addition to the previously reported mononuclear palladium–dioxygen complexes: Pd(η2–O2) and Pd(η2–O2)2, dinuclear palladium–dioxygen complexes: Pd22–O2) and Pd22–O2)2 were formed under visible light irradiation and were identified on the basis of isotopic substitution and theoretical calculations. In addition, experiments doped with xenon in argon coupled with theoretical calculations suggest that the Pd(η2–O2), Pd22–O2) and Pd22–O2)2 complexes are coordinated by two argon or xenon atoms in solid argon matrix, and therefore, should be regarded as the Pd(η2–O2)(Ng)2, Pd22–O2)(Ng)2 and Pd22–O2)2(Ng)2 (NgAr or Xe) complexes isolated in solid argon.  相似文献   

18.
A solid-phase extraction (SPE) method followed by a reversed-phase high-performance liquid chromatography (HPLC) procedure is reported for the assay of a wide polarity range acaricide residues in honey. After selection of suitable chromatographic and detection conditions, most steps of the SPE procedure that may affect to the recovery were investigated. Honey sample was buffered at pH 6 and then applied to the preconditioned C18 sorbent. A washing step was performed with 1 ml of a mixture of tetrahydrofuran (THF)–phosphate buffer (10:90, v/v) and finally, the analytes were eluted with 1 ml of THF. The extract was evaporated to dryness, reconstituted in mobile phase and chromatographed on a reversed-phase C18 column with diode array detection. The recoveries of the more polar acaricides were higher than 80% and 60–70% for the more apolar ones. Limits of detection obtained ranged from 1 to 200 ng/g.  相似文献   

19.
The Lewis acid-catalyzed atom transfer radical cyclization reactions of olefinic -bromo β-keto amides were investigated. It was found Lewis acid Yb(OTf)3 or Mg(ClO4)2 not only promoted the cyclization reactions, but also resulted in excellent trans stereocontrol in the cyclization products. With the catalysis of Lewis acid Yb(OTf)3 or Mg(ClO4)2 at −78°C in the presence of Et3B/O2, the cyclization reactions of C-olefinic β-keto amides provided cyclic ketones, while the cyclization reactions of N-olefinic β-keto amides led to the formation of γ-lactams, which could be converted to 3-aza-bicyclo[3,1,0]hexan-2-ones.  相似文献   

20.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号