首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of alkaline protease production parameters by Bacillus sp. was investigated using Taguchi methodology. The pH of the medium was observed to be the most significant factor among all selected optimization parameters at an individual level. The combinatorial influence of least significant factors, inoculum level and salt solution concentration (at the individual level), resulted in an interacting severity index of 76%, suggesting their interactive role in the regulation of protease production in this microbial species. Protease production could be improved more than 100% with Taguchi’s optimized conditions of the medium composition by this microorganism.  相似文献   

2.
An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergerts. The protease purified and characterized in this study was found to be saperior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anionexchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be amonomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50°C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzme significantly.  相似文献   

3.
Alkaline thiol protease named Prot 1 was isolated from a culture filtrate ofBotrytis cinerea. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. Thus, the enzyme was purified to homogeneity with specific activity of 30-fold higher than that of the crude broth. The purified alkaline protease has an apparent molecular mass of 43 kDa under denaturing conditions as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular mass (45 kDa), determined by gel filtration, indicated that the alkaline protease has a monomeric form. The purified protease was biochemically characterized. The enzyme is active at alkaline pH and has a suitable and high thermostability. The optimal pH and temperature for activity were 9.0–10.0 and 60°C, respectively. This protease was stable between pH 5.0 and 12.0. The enzyme retained 85% of its activity by treatment at 50°C over 120 min; it maintained 50% of activity after 60 min of heating at 60°C. Furthermore, the protease retained almost complete activity after 4 wk storage at 25°C. The activity was significantly affected by thiol protease inhibitors, suggesting that the enzyme belongs to the alkaline thiol protease family. With the aim on industrial applications, we focused on studying the stability of the protease in several conditions. Prot 1 activity was not affected by ionic strength and different detergent additives, and, thus, the protease shows remarkable properties as a biodetergent catalyst.  相似文献   

4.
Feather waste is generated in large amounts as a byproduct of commercial poultry processing. This residue is almost pure keratin, which is not easily degradable by common proteolytic enzymes. A feather-degrading bacterium was isolated from poultry feathers in decomposition. The strain identified as kr16 showed important feather-degrading activity when grown on basal medium containing 10 g/L of native feather as the source of energy, carbon, and nitrogen. The isolate was characterized according to the phenotypical characteristics and biochemical profiling that belong to the Bacillus genus. Keratinolytic activity of this isolate was monitored during cultivation of the bacterium on raw feathers at different temperatures. Maximum growth and feather-degrading activity were observed at 30–37°C. The keratinolytic enzyme had a pH optimum ranging from 8.0 to 11.0 and a temperature optimum of 45–65°C. The keratinase was strongly inhibited by EDTA and the metal ions Hg2+ and Sn2+.  相似文献   

5.
Agar-immobilized alkaliphilic Bacillus sp. AR-009 cells were used for xylanase production using batch and continuous culture. In a batch culture, maximum enzyme production was observed after 48 h and remained high up to 72 h. In repeated batch cultivation, immobilized cells produced an appreciable level of xylanase activity in seven consecutive batches without any significant decline in productivity. For continuous xylanase production, immobilized cells were packed in a jacketed glass column and sterile medium was continuously pumped. A stable continuous production of xylanase was observed over a period of 1 mo. The volumetric productivity of the continuous culture was 17-fold higher than the batch culture using free cells.  相似文献   

6.
Two Bacillus sp. strains, HR-08 and KR-8102, isolated from soil of the west and north parts of Iran were screened on gelatin agar medium for their ability to produce alkaline protease. The enzymes were active in a wide pH range (6.0–11.0) and stable in the alkaline range (7.0–12.0). The optimum temperatures for the protease from HR-08 and KR-8102 were 65 and 50°C, respectively. The irreversible thermoinactivation of HR-08 and KR-8102 proteases showed that the stability of HR-08 enzyme was higher than that of KR-8102 and the half-lives of these enzymes were 95 and 32 min at 50°C, respectively. In the presence of 10 mM Ca2+, HR-08 retained 100, 90, and 20% of its initial activity after heating for 30 min at 50, 60, and 70°C, respectively. Enzymes were inhibited by phenylmethylsulfonyl fluoride and iodoacetate. After inhibition by iodoacetate, both enzymes were reactivated by dithiothreitol. These data show that the enzymes seem to be thiol-dependent serine alkaline proteases. The enzymes especially from HR-08 were stable in the presence of H2O2, surfactants, and local detergents; their activities were enhanced in the presence of 5 mM Fe2+; and the presence of 5mM metal ions such as Mg2+, Cu2+, and Mn2+ produced almost no effect.  相似文献   

7.
A keratinolytic protease-producing microorganism was isolated from soybean paste waste and was identified as a strain of Bacillus sp. The keratinase was purified by polyethylene glycol precipitation and two successive column chromatographies with DEAE-Toyopearl 650C and Sephacryl S-200 HR. The purified enzyme had overall 11 purification folds with an 18% yield. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration on Sephacryl G-200 indicated that the purified enzyme was monomeric and had a molecular weight of 134 kDa. The optimum temperature and pH were 40°C and 7.0, respectively. This enzyme was completely inhibited by EDTA and EGTA, and it was restored by the addition of Ca+2 and Mg+2. These results suggested that it is a metalloprotease. The stimulated enzyme activity by reducing agents indicated that the reducing condition was important in the expression of the activity.  相似文献   

8.
A statistical approach, response surface methodology (RSM), was used to study the production of extracellular protease fromBacillus sp., which has properties of immense industrial importance. The most influential parameters for protease production obtained through the method of testing the parameters one at a time were starch, soybean meal, CaCl2, agitation rate, and inoculum density. This method resulted in the production of 2543 U/mL of protease in 48 h fromBacillus sp. Based on these results, face-centered central composite design falling under RSM was employed to further enhance protease activity. The interactive effect of the most influential parameters resulted in a 1.50-fold increase in protease production, yielding 3746 U/mL in 48 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity. On subsequent scale-up in a 30-L bioreactor using conditions optimized through RSM, 3978 U/mL of protease was produced in 18 h. This clearly indicated that the model remained valid even on a large scale. RSM is a quick process for optimization of a large number of variables and provides profound insight into the interactive effect of various parameters involved in protease production.  相似文献   

9.
Proteases constitute one of the most important groups of industrial enzymes, accounting for at least 25% of the total enzyme sales, with two-thirds of the proteases produced commercially being of microbial origin (1). Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes or alternative, technologies, and the steadily increasing number of applications for immobilized enzymes. The general application of immobilized proteins and enzymes has played a central role in the expansion of biotechnology and synthesis-related industries. Proteases have been immobilized on natural and synthetic supports (2,3). In the present work, a protease from Bacillus polymyxa was partially purified with 80% ammonium sulfate precipitation followed by dialysis and chromatography using a diethylaminoethyl (DEAE)-cellulose ion exchange column. Immobilization was evaluated by using different adsorbents (chitin, chitosan, alginate, synthetic zeolite, and raw zeolite) and the storage stability and recycle of the immobilized protease determined. Immobilization yields were estimated to be 96% and 7.5%, by using alginate and chitosan, respectively, after, 24 h. The yield of the immobilization was 17% for alginate at 16h and the enzyme did not adsorb on the chitin, chitosan, synthetic zeolite, and raw zeolite.  相似文献   

10.
The reactivity of partially purified alkaline protease fromBacillus subtilis, to keratin and collagen containing substances has been investigated. The experimentally obtained apparent values of the Michaelis-Menten constant (Km), the maximum reaction rate (Kmax, and the energy of activation (Ea), lead to the conclusion that:
1.  The keratin containing substrates are not so easily digested as those containing collagen.
2.  The kinetics of the reaction with time has been investigated.
The relationship of Kmax was a function of temperature, aiming at the industrial application of this reaction, has been obtained.  相似文献   

11.
Bacteria of genus Bacillus are active producers of extracellular proteases, and characteristics of enzyme production by Bacillus species have been well studied. The aim of this experimental study is isolation and partial purification of protease enzyme from the Bacillus subtilis megatherium bacteria species. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species on suitable media. The partial purification was reali-zed by applying successively ammonium sulfate precipitation, dialysis, DEAE-cellulose ion exchange chromatography to the supernatant. In this study, the effect of substrate concentration, reaction time, the effect of inhibitor and activator on the optimum pH, optimum temperature, pH stability, and temperature stability was determined. Molecular weight of the obtained enzyme was investigated by SDS-PAGE. In this study, the specific activity of the supernatant, which was partially purified from Bacillus subtilis megatherium bacteria, was 10.4 U/mg, specific activity of supernatant was 13.5 U/mg after 80% ammonium sulfate fractionation. The final enzyme preparation was 1.1-fold purer than the crude homogenate. Molecular weight of the protease was determined, and it was found that the weight of enzyme was 45 kDa by using SDS-PAGE.  相似文献   

12.
TheBacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated whenB. subtilis cells were grown on the laboratory medium 2XSG.B. subtilis cells harboring the multicopyaprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and kera-tinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.  相似文献   

13.
A protease from newly isolated Bacillus circulans M34 was purified by Q‐Sepharose anion exchange chromatography and Sepharose–bacitracin affinity chromatography followed by (NH4)2SO4 precipitation. The molecular mass of the purified enzyme was determined using SDS–PAGE. The optimum pH and temperature for protease activity were 11 and 50°C, respectively. The effect of various metal ions on protease activity was investigated. Alkaline protease from Bacillus circulans M34 wase activated by Zn2+, Cu2+ and Co2+ up to 31%. The purified protease was found to be stable in the organic solvents, surfactants and oxidizing agent. The substrate specificity of purified protease was investigated towards different substrates. The protease was almost completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The kinetic parameters of the purified protease, maximum rate (Vmax) and Michaelis constant (Km), were determined using a Lineweaver–Burk plot. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Streptomyces are important microorganisms because of their capacity to produce numerous bioactive molecules. In the present work protease production, by Streptomyces sp. 594 isolated from a Brazilian Cerrado soil, was maximized by optimizing a low-cost culture medium composition (casitone and sugarcane molasses) using statistical experimental design. The final protease activity (56 U/mL) was 2.8-fold and 58-fold higher than that obtained in the beginning of this study, and in a previous work, using an actinomycete selection medium, respectively. Protease production, not growth associated, appeared to be modulated by an inducer system, whereby the C/N ratio seemed to play a significant role.  相似文献   

15.
Physical and chromatographic characterization of the surfactin biosurfactant produced by Bacillus subtilis isolate BS5 has been conducted to study its potentiality for industrial application. The crude extract of test surfactin appeared as off-white to buff flake-like amorphous residue with bad odor similar to sour pomegranate. Test surfactin showed solubility in aqueous solution at pH>5 with optimum solubility at pH 8-8.5. It was also soluble in organic solvents like ethanol, acetone, methanol, butanol, chloroform, and dichloromethane. Surfactin crystals appeared rectangular with blunt corners and were arranged perpendicular to each other making a plus sign. Extracted surfactin showed high surface activity, as it could lower the surface tension of water from about 70 to 36 mN/m at approximately 15.6 mg/l. Moreover, test surfactin exhibited excellent stabilities at high temperatures (100 degrees C for up to 1 h at and autoclaving at 121 degrees C for 10 min), salinities (up to 6% NaCl), and over a wide range of pH (5-13). Test surfactin in the cell-free supernatant or crude culture broth forms showed high emulsification indices against kerosene (62.5% and 59%, respectively), diesel (62.5% and 66%, respectively), and motor oil (62% and 66%, respectively). These characters can effectively make test surfactin, in its crude forms, a potential candidate for the use in bioremediation of hydrocarbon-contaminated sites or in the petroleum industry. Chromatographic characterization of test surfactin, using high-performance liquid chromatography technique, revealed that the extracted surfactin contained numerous isoforms, of which six were found in the standard surfactin preparation (Fluka). Additional peaks appeared in the test surfactin and not in the standard one. These peaks may correspond to new surfactin isoforms that may be present in the test surfactin produced by B. subtilis isolate BS5.  相似文献   

16.
Bacillus subtilis BS5 is a soil isolate that produces promising yield of surfactin biosurfactant in mineral salts medium (MSM). It was found that cellular growth and surfactin production in MSM were greatly affected by the environmental fermentation conditions and the medium components (carbon and nitrogen sources and minerals). Optimum environmental conditions for high surfactin production on the shake flask level were found to be a slightly acidic initial pH (6.5-6.8), an incubation temperature of 30 degrees C, a 90% volumetric aeration percentage, and an inoculum size of 2% v/v. For media components, it was found that the optimum carbon source was molasses (160 ml/l), whereas the optimum nitrogen source was NaNO(3) (5 g/l) and the optimum trace elements were ZnSO(4).7H(2)O (0.16 g/l), FeCl(3).6H(2)O (0.27 g/l), and MnSO(4).H(2)O (0.017 g/l). A modified MSM (molasses MSM), combining the optimum medium components, was formulated and resulted in threefold increase in surfactin productivity that reached 1.12 g/l. No plasmid could be detected in the tested isolate, revealing that biosurfactant production by B. subtilis isolate BS5 is chromosomally mediated but not plasmid-mediated.  相似文献   

17.
A Bacillus subtilis isolate was shown to be able to produce extracellular protease in solid-state fermentations (SSF) using soy cake as culture medium. A significant effect of inoculum concentration and physiological age on protease production was observed. Maximum activities were obtained for inocula consisting of exponentially growing cells at inoculum concentrations in the range of 0.7–2.0 mg g−1. A comparative study on the influence of cultivation temperature and initial medium pH on protease production in SSF and in submerged fermentation (SF) revealed that in SSF a broader pH range (5–10), but the same optimum temperature (37°C), is obtained when compared to SF. A kinetic study showed that enzyme production is associated with bacterial growth and that enzyme inactivation begins before biomass reaches a maximum level for both SF and SSF. Maximum protease activity and productivity were 960 U g−1 and 15.4 U g−1 h−1 for SSF, and 12 U mL−1 and 1.3 U mL−1 h−1 for SF. When SSF protease activity was expressed by volume of enzyme extract, the enzyme level was 10-fold higher and the enzyme productivity 45% higher than in SF. These results indicate that this bacterial strain shows a high biotechnological potential for protease production in solid-state fermentation.  相似文献   

18.
Summary An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation. Solid waste from melon was used as the basic nutrient source and was supplemented with olive oil. The highest lipase production (78,069 U/g) was achieved after 24h of cultivation with 1% olive oil enrichment. Enzyme had an optimal activity at 37°C and pH 7.0, and sodium dodecyl sulfate increased lipase activity. NH 4NO3 increased enzyme production, whereas organic nitrogen had no effect. The effect of the type of carbon sources on lipolytic enzyme production was also studied. The best results were obtained with starch and maltose (148,932 and 141,629 U/g, respectively), whereas a rather low enzyme activity was found in cultures grown on glucose and galactose (approx 118,769 and 123,622 U/g, respectively). Enzyme was inhibited with Mn+2 and Ni+2 by 68 and 74%, respectively. By contrast, Ca+2 enhanced enzyme production by 5%.  相似文献   

19.
A cassava flour-processing effluent (manipueira) was evaluated as a substrate for surfactant production by two Bacillus subtilis strains. B. subtilis ATCC 21332 reduced the surface tension of the medium to 25.9 mN/m, producing a crude biosurfactant concentration of 2.2 g/L. The wild-type strain, B. subtilis LB5a, reduced the surface tension of the medium to 26.6 mN/m, giving a crude biosurfactant concentration of 3.0 g/L. A decrease in surfactant concentration observed for B. subtilis ATCC 21332 seemed to be related to an increase in protease activity. The biosurfactant produced on cassava effluent medium by B. subtilis LB5a was similar to surfactin.  相似文献   

20.
Cucumisin (EC 3.4.21.25) isolated from prince melon fruit is a plant serine protease. Its milk-clotting activity was compared with plant cysteine proteases such as papain (EC 3.4.22.2) and ficain (EC 3.4.22.3). Cucumisin was more stable than papain under the condition of pH 7.1, 37‡C for 24 h. The milk-clotting activity of cucumisin was the same to that of papain and was half value of that of ficain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号