首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

2.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

3.
N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and −180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.  相似文献   

4.
This work considers the effect of vacuum annealing on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin film and Sb0.9Bi1.1Te2.9Se0.1–C composites with various carbon contents produced by ion-beam deposition in an argon atmosphere. The electrical resistivity and the thermopower of Sb0.9Bi1.1Te2.9Se0.1–C nanocomposites are found to be dependent on not only the carbon concentration but also the type and the concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution, which determine the type of conductivity of Sb0.9Bi1.1Te2.9Se0.1 granules. The power factors are estimated for films of Sb0.9Bi1.1Te2.9Se0.1 solid solution and films of Sb0.9Bi1.1Te2.9Se0.1–C composites and found to have values comparable with the values for nanostructured materials on the basis of (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

5.
The pressure dependence of the thermoelectric power of monoclinic As2Te3 is measured up to 10 GPa using a Mao-Bell diamond anvil cell. The thermoelectric power never reaches an absolute value greater than the ambient pressure value of 242 μV/K. Evidence of a phase transition is present between 6 and 8 GPa where the thermoelectric power reaches an absolute value of 225 μV/K after passing through a minimum of S≈75 μV/K. X-ray diffraction experiments confirm that the resulting structure is β-As2Te3, which is isostructural with Bi2Te3 and Sb2Te3.  相似文献   

6.
The electrochemical behaviors of BiIII, TeIV and SbIII single ions and their mixtures were investigated in nitric acid and hydrochloric acid system separately. Based on which, BixSb2−xTey thermoelectric films were prepared by potentiostatic electrodeposition from the solutions with different concentrations of BiIII, TeIV and SbIII in the two acid systems. The morphologies, compositions, structures, Seebeck coefficients and resistivities of the deposited thin films were characterized and compared by ESEM (or FESEM), EDS, XRD, Seebeck coefficient measurement system and four-probe resistivity measuring device respectively. The results show that although BixSb2−xTey thermoelectric thin film which structure is consistent with the standard pattern of Bi0.5Sb1.5Te3 can be gained in both of the two acid solutions by adjusting the deposition potential, their morphologies and thermoelectric properties have big differences in different acid solutions.  相似文献   

7.
A study is reported on the thermoelectric properties of n-type solid solutions Bi2Te3?y Sey (y=0.12, 0.3, 0.36), Bi2?x SbxTe3?y Sey (x=0.08, 0.12; y=0.24, 0.36), and Bi2Te3?z Sz (z=0.12, 0.21) as functions of carrier concentration within the 80-to 300-K range. It has been established that the highest thermoelectric efficiency Z is observed in the Bi2Te3?y Sey (y=0.3) solid solution containing excess Te at optimum carrier concentrations (0.35×1019 cm?3) and at temperatures from 80 to 250 K. The increase in Z in the Bi2Te3?y Sey solid solution compared with Bi2?x SbxTe3?y Sey and Bi2Te3?z Sz is accounted for by the high mobility μ0, an increase in the effective mass m/m 0 with decreasing temperature, the low lattice heat conductivity κL, and the weak anisotropy of the constant-energy surface in a model assuming isotropic carrier scattering.  相似文献   

8.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

9.
The temperature dependence of the Raman spectra of Bi2Te3 and Bi0.5Sb1.5Te3 thermoelectric films was investigated. The temperature coefficients of the Eg(2) peak positions were determined as –0.0137 cm–1/°C and –0.0156 cm–1/°C, respectively. The thermal expansion of the crystal caused a linear shift of the Raman peak induced by the temperature change. Based on the linear relation, a reliable and noninvasive micro‐Raman scattering method was shown to measure the thermal conductivity of the thermoelectric films. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The effect thermal treatment in a vacuum has on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 solid solution thin films obtained via ion-beam sputtering in an argon atmosphere is considered. It is established that the specific resistance and thermopower are determined by the type and concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution. The power factor values are found to be comparable to those of nanostructured materials based on (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

11.
We have obtained the metastable phase of the thermoelectric alloy Bi0.4Sb1.6Te3 with electron type conductivity for the first time using the method of quenching under pressure after treatment at P=4.0 GPa and T=400–850 °C. We have consequently performed comparative studies with the similar phase of Sb2Te3. The polycrystalline X-ray diffraction patterns of these phases are similar to the known monoclinic structure α-As2Te3 (C2/m) with less monoclinic distortion, β ≈ 92°. We have measured the electrical resistivity and the Hall coefficient in the temperature range of T=77?450 K and we have evaluated the Hall mobility and density of charge carriers. The negative Hall coefficient indicates the dominant electron type of carriers at temperatures up to 380 K in the metastable phase of Sb2Te3 and up to 440 K in the metastable state of Bi0.4Sb1.6Te3. Above these temperatures, the p-type conductivity proper to the initial phases dominates.  相似文献   

12.
Thin films of Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 alloy and have been deposited on precleaned glass substrate by thermal evaporation technique in a vacuum of 2?×?10?6 Torr. The structural study was carried out by X-ray diffractometer, which shows that the films are polycrystalline in nature. The grain size, microstrain and dislocation density were determined. The Seebeck coefficient was determined as the ratio of the potential difference across the films to the temperature difference. The power factor for the (Sb2Te3)70 (Bi2Te3)30 and (Sb2Te3) is found to be 19.602 and 1.066 of the film of thickness 1,500 Å, respectively. The Van der-Pauw technique was used to measure the Hall coefficient at room temperature. The carrier concentration was calculated and the results were discussed.  相似文献   

13.
Epitaxial c-oriented Bi2Te3 films 1.2 μm in thickness are grown by the hot wall method for a low supersaturation of the vapor phase over the surface of mica substrates. The hexagonal unit cell parameters a = 4.386 Å and c = 30.452 Å of the grown films almost coincide with the corresponding parameters of stoichiometric bulk Bi2Te3 crystals. At T = 100 K, the Hall concentration of electrons in the films is on the order of 8 × 1018 cm?3, while the highest values of the thermoelectric coefficient (α ≈ 280 μV K?1) are observed at temperatures on the order of 260 K. Under impurity conduction conditions, conductivity σ of the films increases upon cooling in inverse proportion to the squared temperature. In the temperature range 100–200 K, thermoelectric power parameter α2σ of Bi2Te3 films has values of 80–90 μW cm?1 K?2.  相似文献   

14.
The electrochemical reduction processes on stainless-steel substrates from an aqueous electrolyte composed of nitric acid, Bi3+, HTeO2+, SbO+ and H2SeO3 systems were investigated using cyclic voltammetry. The thin films with a stoichiometry of Bi2Te3, Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 have been prepared by electrochemical deposition at selected potentials. The structure, composition, and morphology of the films were studied by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM) and electron microprobe analysis (EMPA). The results showed that the films were single phase with the rhombohedral Bi2Te3 structure. The morphology and growth orientation of the films were dependent on the deposition potentials.  相似文献   

15.
n-type Mg3Sb2–Mg3Bi2 alloy shows as a potential new thermoelectric material (TE) and has been widely researched recently. The pure phase n-type Mg3·20(Sb0·3Bi0.7)1.99Te0.01 were prepared by adjusting Mg content with the Bi impurity phase being effectively suppressed. Then, Co element was doped into the pure phase and the electrical conductivity of samples were improved. With a high power factor of 20.3 μW cm−1K−2 for Mg3·185Co0·015(Sb0·3Bi0.7)1.99Te0.01 at 525 K. Additionally, it was found that the phonon scattering is enhanced due to the larger atomic mass of Co comparing to Mg and the lattice thermal conductivity is reduced. As a result, a high ZT value of ~ 1.03 at 525 K is achieved for the Mg3·185Co0·015(Sb0·3Bi0.7)1.99Te0.01.  相似文献   

16.
Ge2Sb2Te5 is a famous phase-change memory material for rewriteable optical storage, which is widely applied in the information storage field. The stable trigonal phase of Ge2Sb2Te5 shows potential as a thermoelectric material as well, due to its tunable electrical transport properties and low lattice thermal conductivity. In this work, the carrier concentration and effective mass of Ge2Sb2Te5 are modulated by substituting Te with Se. Meanwhile, the thermal conductivity reduces from 2.48 W m−1 K−1 for Ge2Sb2Te5 to 1.37 W m−1 K−1 for Ge2Sb2Te3.5Se1.5 at 703 K. Therefore, the thermoelectric figure of merit zT increases from 0.24 for Ge2Sb2Te5 to 0.41 for Ge2Sb2Te3.5Se1.5 at 703 K. This study reveals that Se alloying is an effective way to enhance the thermoelectric properties of Ge2Sb2Te5.  相似文献   

17.
Thick Cu-doped Sb2Te3 films were deposited on flexible substrate by DC magnetron sputtering from a mosaic Cu–Sb2Te3 target. The Cu-doped Sb2Te3 films were vacuum annealed to improve their thermoelectric properties. Density functional theory was used to clarify the internal mechanism of the Cu doped into the Sb2Te3 system. The results showed that Cu substitution on a Sb site induced electronic states or impurity peaks of Sb2Te3 at a valence band maximum. The carrier concentration of the Cu-doped Sb2Te3 films increased as the Cu-doped concentration increased. However, the crystallite size and Seebeck coefficient of the Cu-doped Sb2Te3 films decreased as the Cu-doped concentration increased. Post-annealing treatment improved the microstructure and thermoelectric properties of the Cu-doped Sb2Te3 films. The maximum electrical conductivity and power factor values of 754.20 S/cm at 50 °C and 1.56 10−3 W/mK2 at 100 °C were obtained in the annealed film with a Cu-doped concentration of 3 at%.  相似文献   

18.
Thermoelectric films of n-Bi2Te3−ySey were prepared by potentiostatic electrodeposition technique onto stainless steel and gold substrates at room temperature. These films were used for morphological, compositional and structural analysis by environment scanning electron microscope (ESEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The effect of different substrates on the structure and morphology of Bi2Te3−ySey films and relation between Se content in the electrodepositing solutions and in the films were also investigated. These studies revealed that Bi, Te and Se could be co-deposited to form Bi2Te3−ySey semiconductor compound in the solution containing Bi3+, HTeO2+ and H2SeO3. The morphology and structure of the films are sensitive to the substrate material. The doped content of Se element in the Bi2Te3−ySey compound can be controlled by adjusting the Se4+ concentration in the electrodepositing solution. X-ray diffraction analysis indicates that the films prepared at −40 mV versus saturated calomel electrode (SCE) exhibit strong (1 1 0) orientation with rhombohedral structure.  相似文献   

19.
Glassy substrates Se79Te15Sb6 thin films are thermally evaporated onto chemically cleaned glass. Optical absorption measurements are carried out on as-deposited and thermal annealed Se79Te15Sb6 films. It is found that the mechanism of the optical absorption follows the rule of non-direct transition. The annealed Se79Te15Sb6 films show an increase in the optical energy gap with increasing temperature of annealing higher than the glass transition temperature (363 K). The electrical conductivity of the as-deposited and annealed films is found to be of Arrhenius type with temperature in the range 300–360 K. The effect of thermal annealing on the activation energy for conduction is also studied. The results are discussed on the basis of amorphous–crystalline transformations. PACS 61.40; 61.40.D; 64.70.D; 72.80.N; 78.65.M  相似文献   

20.
The use of surface active liquids facilitates intense stratification of mechanically strained Bi0.5Sb1.5Te3 crystallites. A Bi0.5Sb1.5Te3 heat element with specified thickness and structure is formed by layer-by-layer deposition of “thermoelectric ink” on its free surface. A heat treatment of the formed thermoelectric element in argon at a temperature of 800 K makes it possible to minimize radically the resistance of the grain boundaries introduced into its bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号