首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A Nd3+:Na2La4(WO4)7 crystal with dimensions of ? 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10?5 K?1 along c-axis and 1.23 × 10?5 K?1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd–Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10?20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10?20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10?20 cm2 for σ-polarization and 2.67 × 10?20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.  相似文献   

2.
A 1.2 mm thick microchip cleaved from a 1.2 at.% Nd3+: BaGd2(MoO4)4 crystal was used as the laser gain medium directly. The laser cavity mirrors were coated on the microchip without cutting and polishing. In the 1.06 μm quasi-CW laser operation, the microchip was pumped by a Ti:sapphire laser with a duty cycle of 10%, the threshold is 10 mW, and the slope efficiency is 50%. In the CW laser operation pumped by a diode laser, the threshold and slope efficiency are 140 mW and 33%, respectively. The results demonstrate that the unprocessed surfaces of the cleaved microchip have good enough flatness and parallelism for laser operation.  相似文献   

3.
End-pumped by a single-stripe 805-nm diode laser, a maximum continuous-wave output power of 290 mW with slope efficiency of 42% and 90 mW with slope efficiency of 44% around 2 μm were achieved in a 1.6-mm-thickness, unprocessed 7.2 at.% Tm3+:BaGd2(MoO4)4 cleavage plate in a hemispherical and plano–plano cavities, respectively, when the absorbed pump power was 830 mW. The dependence of the polarization of output laser on the output coupler transmission was investigated. The influence of upconversion on the laser performance was analyzed. The results show that the unprocessed Tm3+:BaGd2(MoO4)4 cleavage plate is a promising 2-μm laser gain medium pumped by diode laser around 808 nm.  相似文献   

4.
It is reported that efficient continuous-wave (CW) self-frequency-doubling green laser at 530 nm performed with a diode-pumped Nd3+:YCa4O(BO3)3 (Nd:YCOB) laser. With a diode pump power of 14.3 W, TEM00 mode green laser at 530 nm of 1.07 W is obtained. At the output power level of 1.07 mW, the output stability is better than 5%. The beam quality M2 value is about 1.37. To the best of our knowledge, this is the highest power laser at 530 nm generated by self-frequency doubling of a diode pumped Nd:YCOB laser.  相似文献   

5.
Output performances of Nd-vanadate lasers with simultaneous dual-wavelength emission on the 1.06-μm 4 F 3/24 I 11/2 transition and the 4 F 3/24 I 13/2 transition at 1.34 μm are discussed. The design uses a linear resonator for emission at 1.06 μm and an L-type folded resonator for the 1.34-μm wavelength, and the ratio between the power of a single wavelength and the total power is adjusted by the choice of the output mirror transmissions. A continuous-wave (CW) Nd:GdVO4 laser with total output power in the range of 3.9 to 6.8 W and the corresponding ratio of the output power at 1.06 μm to the total output power between 0.26 and 0.97 is realized. It is also shown that in comparison with the pump at 808 nm, the pump directly into the 4 F 3/2 emitting level at 879 nm improves the total output power. Furthermore, a Nd:GdVO4 laser with simultaneous emission at 1.06 and 1.34 μm and that generates also green light at 0.53 μm by intracavity frequency-doubling with LiB3O5 (LBO) nonlinear crystal is demonstrated.  相似文献   

6.
Laser operation near 1.06 μm by a diode-pumped Nd:(Lu x Gd1?x )3Ga5O12 (Nd:LGGG) disordered crystal has been investigated. Cw oscillation, with a slope efficiency as high as 61% and 230 mW output power, was achieved with 400 mW absorbed power from a 1-W laser diode. Stable passive mode locking with single- or multi-banded spectrum was obtained with a semiconductor saturable absorber mirror (SAM) and a single-prism, dispersion-compensated cavity. Fourier limited pulses with duration ≈3–9 ps and output power ≈40 mW were generated at three well-defined laser transitions in the range 1062–1067 nm.  相似文献   

7.
J. An  Sh. Zhao  G. Li  K. Yang  D. Li  J. Wang  M. Li 《Laser Physics》2008,18(11):1312-1315
By using a piece of codoped Nd3+:Cr4+:YAG crystal as a saturable absorber, a laser-diode pumped passively Q-switched Nd:YVO4/YVO4 laser has been realized. The maximum laser output power of 2.452 W has been obtained at the incident pump power of 8.9 W for an 8.8% transmission of the output coupler at 1064 nm, corresponding to a slope efficiency of 30%. The other output laser characteristics of the laser have also been investigated. The laser with a Nd3+:Cr4+:YAG saturable absorber has a lower threshold pump power and a higher slope efficiency compared to that with a similar small-signal transmission of a Cr4+:YAG saturable absorber.  相似文献   

8.
We investigate the output performance of the 1.06 μm 4F3/24I11/2 transition in Nd:GdVO4 and Nd:YVO4 thin-disk lasers under multi-pass pumping with diode lasers at 0.81 μm and at 0.88 μm, which corresponds to direct in-band pumping of the 4F3/2 emitting level. The use of a pump module with 24 passes through the crystal allowed the realization of an in-band pumped Nd:GdVO4 thin-disk laser with 14.9 W of continuous wave (cw) output power at 1.06 μm; the overall optical-to-optical efficiency was 0.50 and the slope efficiency with respect to the incident pump power was 0.52. Intracavity frequency-doubling of the Nd:GdVO4 thin-disk laser with a LiB3O5 (LBO) nonlinear crystal yielded 9.1 W of cw output power in the green at 0.53 μm with an overall optical-to-optical efficiency of 0.31.  相似文献   

9.
A compact and efficient diode-pumped intracavity-frequency-doubled Nd:GdVO4/KTP green laser is demonstrated with a flat–flat cavity design. With a 1.3 at. % Nd3+-doped GdVO4 crystal and pumped at the weak-absorption peak of 806 nm, the second-harmonic output power at 532 nm was measured to be 1.95 W at an incident pump power of 8.4 W, corresponding to an optical conversion efficiency of 23.2%. The output characteristic at the fundamental wavelength of 1.063 μm was investigated with two different pump wavelengths. More than 4.5-W output power was generated when the laser was pumped at 806.2 nm. Received: 26 July 2000 / Revised version: 18 September 2000 / Published online: 7 February 2001  相似文献   

10.
An erbium doped K0.603Li0.397Ta0.428Nb0.572O3 single crystal was grown by the step-cooling technique. The crystal has a tetragonal tungsten bronze-type structure at room temperature with a Curie temperature of 303°C. There are Er ions characteristic absorption bands around 449, 485, 521, 550, and 652 nm in the visible absorption spectrum. Upconversion fluorescence spectra and power dependence centered at 527 nm, 548 nm, and 660 nm under 975 nm excitation were measured at room temperature. Decay lifetimes of the 548 nm and 660 nm emission bands are 281 μs and 420 μs, respectively. The lifetime of the 548 nm emission corresponding to the transition of ?4 S 3/24 I 15/2 is ten times the lifetime of the same transition of Er3+ in LiNbO3 crystal and twice in KYb(WO4)2 crystal. The crystal might become a promising upconversion laser material. The upconversion mechanism of Er3+ in the sample was discussed based on decay curves and pump power dependence analyses in this work.  相似文献   

11.
We report on diode-pumped laser operation of Pr3+,Mg2+:SrAl12O19 at lasing wavelengths of λ L = 724.4 nm, λ L = 643.5 nm, and λ L = 622.8 nm. Furthermore, the laser threshold could be reached in the green spectral range. By pumping the crystal longitudinally from each side with two polarization beam combined InGaN laser diodes, a total pump power of ≈4 W was available. In the deep red spectral range, a maximum output power of 564 mW was achieved with a maximum slope efficiency of 50 % with respect to the absorbed pump power. The maximum possible internal losses were estimated to ≈1 %. Beam quality factors M 2 were in the range of 1.2–1.5.  相似文献   

12.
It is reported that efficient continuous-wave (CW) blue laser generation at 465 nm in a BiB3O6 (BiBO) crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 18.4 W, output power of 823 mW at 465 nm has been obtained using a 10 mm-long BiBO crystal. At the output power level of 823 mW, the output stability is better than 2.3%.  相似文献   

13.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

14.
It is reported that efficient continuous-wave (CW) red laser generation at 670 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 15.6 W, output power of 273 mW at 670 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 273 mW, the output stability is better than 3.7%.  相似文献   

15.
Zhao  C. C.  He  M. Z.  Hang  Y.  Yin  J. G.  Zhang  L. H.  He  X. M.  Gong  J.  Yu  T.  Chen  W. B. 《Laser Physics》2012,22(5):918-921
Polarized absorption and fluorescence spectra Nd3+-doped LiLuF4 single crystal were investigated. The peak emission cross section at 905 and 910 nm are 0.97 × 10−20 and 0.82 × 10−20 cm2, respectively. Two samples with different dimensions were tested in the laser experiments. With a laser-diode as the pump source, a maximum 1.17 W laser output at 910 nm has been obtained with a slope efficiency of 16.3% with respect to the pump power.  相似文献   

16.
Undoped and Nd3+ doped lutetium niobate phases have been prepared by a conventional solid state reaction method using lutetium acetate and niobium oxide at 1250 °C for 6 h. X-ray diffraction patterns of the 6 mol% Lu3NbO7 sample exhibited a cubic fluorite single phase. Phase structure exhibited interesting crystallization behaviour depending on increasing Nd3+ concentration which led to a Lu3NbO7 single phase formation during the heat treatment process. SEM investigations were also in agreement with the XRD results. Morphologies of Nd3+ doped lutetium niobate powders exhibited oval like shapes and grain sizes varied between 0.3 and 5 μm. Near-infrared luminescence properties of Nd3+ doped Lu3NbO7 were also studied. 1.06 μm laser transition characteristics of Nd3+ doped lutetium niobate have been observed. Concentration quenching phenomenon was not detected depending on increasing Nd3+ doping concentrations at room temperature.  相似文献   

17.
We present the strict design parameters of the experiment for the 780 nm tunable continuous-wave second harmonic (SH) generation by the nonlinear resonator containing a MgO doped periodically poled LiNbO3 (MgO:PPLN) crystal. Optimization of such critical parameters, including focusing and impedance matching, more than 84% SH conversion efficiency and 3.1 W available output power at 780 nm were obtained from the fundamental wave at 1560 nm with two different input couplers. The thermal saturated behavior of the SH output power has been observed in the experiment. The beam quality factor M2 of the generated SH wave is 1.04 (1.03), and the RMS power stability is 1.29% in 3 h. The SH wave was further used to detect the D 2 transitions of Rb atom, exhibiting a fine tunable characteristic. Such laser source can be a suitable candidate in the atomic physics and quantum optics.  相似文献   

18.
Neodymium-doped aluminum oxide films with a range of Nd3+ concentrations are deposited on silicon wafers by reactive co-sputtering, and single-mode channel waveguides with various lengths are fabricated by reactive ion etching. Photoluminescence at 880, 1060, and 1330 nm from the Nd3+ ions with a lifetime of 325 μs is observed. Internal net gain at 845–945 nm, 1064, and 1330 nm is experimentally and theoretically investigated under continuous-wave excitation at 802 nm. Net optical gain of 6.3 dB/cm at 1064 nm and 1.93 dB/cm at 1330 nm is obtained in a 1.4-cm-long waveguide with a Nd3+ concentration of 1.68×1020 cm?3 when launching 45 mW of pump power. In longer waveguides a maximum gain of 14.4 dB and 5.1 dB is obtained at these wavelengths, respectively. Net optical gain is also observed in the range 865–930 nm and a peak gain of 1.57 dB/cm in a short and 3.0 dB in a 4.1-cm-long waveguide is obtained at 880 nm with a Nd3+ concentration of 0.65×1020 cm?3. By use of a rate-equation model, the gain on these three transitions is calculated, and the macroscopic parameter of energy-transfer upconversion as a function of Nd3+ concentration is derived. The high internal net gain indicates that Al2O3:Nd3+ channel waveguide amplifiers are suitable for providing gain in many integrated optical devices.  相似文献   

19.
The basic performance characteristics of a Ho 3+-doped silica fibre laser that operates in a single transverse mode at ~2.1 µm and is pumped with the 1100-nm output from a free-running Yb 3+-doped silica fibre laser are presented. We measure a maximum slope efficiency (with respect to launched pump power) of 35% and we generate a maximum output power of 2.7 W at an optical-to-optical efficiency of 18% with respect to the incident pump power. The wavelength of the output is length tuned from 2090 nm to 2100 nm when the a absL product varies from 1.2 to 2.7. The use of the free-running output from a Yb 3+-doped silica fibre laser to pump the Ho 3+-doped silica fibre laser is very convenient and allows significant scaling of the output power.  相似文献   

20.
Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T 0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 μJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号