首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The nonlinear absorption and nonlinear refractive index of hydrogenated amorphous silicon-selenium (a-Si,Se:H) film prepared by a plasma-enhanced chemical deposition process was measured using a z-scan technique. Intensity dependent transmission was observed and attributed to reverse saturation absorption (optical limiting). The thermal contribution to nonlinear refractive index is discussed. The nonlinear response time was measured by using the pump and probe technique. Reverse saturating absorption was utilized to demonstrate all optical switching.  相似文献   

2.
We present the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of tris(acetylacetonato)manganese(III) solution, using Z-scan technique with a low-power continuous-wave laser at 514 nm. We demonstrate that the light-induced nonlinear refractive index variation leads to strong self-focusing and self-defocusing. A pump and probe technique was used to investigate the cause of nonlinearity. Furthermore, the nonlinear absorption effect was utilized to demonstrate all optical switching.  相似文献   

3.
The third-order optical properties of GeO2–Bi2O3–PbO–TiO2 glasses at 532 nm and 1,064 nm were studied to evaluate their potential for optical limiting and all-optical switching. The Z-scan technique was used to determine the nonlinear (NL) refractive index, n 2, and the NL absorption coefficient, α 2, of samples with different amounts of the constituent oxides. Values of n 2 ≈ + 0.7 × 10?14 cm2/W at 1,064 nm and ≈+1.5 × 10?14 cm2/W at 532 nm were measured. The NL absorption coefficient, α 2, was smaller than the minimum that our apparatus can measure (α 2 < 0.01 cm/GW) in the near-infrared (1,064 nm); in the visible region (532 nm), we obtained α 2 ≈ 4.4 cm/GW. The set of NL parameters measured indicates the potential usefulness of the GeO2–Bi2O3–PbO–TiO2 glasses for all-optical switching at 1,064 nm and for optical limiting at 532 nm.  相似文献   

4.
We present the results from investigations of the nonlinear properties of Congo red solutions using Z-scan technique with a continuous wave argon ion laser at 514 nm. The magnitude and sign of the third-order nonlinear refractive index n2 of aqueous solution of Congo red were determined. The nonlinear refractive index was found to vary with concentration. Third-order nonlinearity is dominated by nonlinear refractive index, which leads to strong self-defocusing and self diffraction in the samples studied. A pump and probe technique was used to investigate the origin of nonlinearity. Furthermore the nonlinear refractive index effect was utilized to demonstrate all optical switching. The optical limiting behavior based on nonlinear refractive index was investigated.  相似文献   

5.
Colloidal PbS nanocrystals have been synthesized by a developed procedure. UV–Vis absorption and Z-scan technique was also applied to study the nonlinear optical properties of prepared lead sulfide nanocrystals at 532 nm wavelength. The nonlinear refractive (n2) and absorption (β) were determined which are confirming the strong nonlinearity at 532 nm of colloidal PbS nanocrystals. The obtained results have not been reported before. In this study, only a weak thermal optical nonlinearity was observed and the dominating nonlinear response is resulted by the electronic origin. The nonlinear optical properties of prepared sample supported wide applications in nanophotonics.  相似文献   

6.
Nonlinear optical response of Au island films to femtosecond laser pulses is studied in the vicinity but not exactly at the surface plasmon absorption peak (λ spr = 560 nm). The third-order nonlinear optical susceptibility is shown to be Reχ (3) = +1.7 × 10?7 esu and Reχ (3) = +1 × 10?7 esu at the wavelengths 800 and 460 nm, respectively. Kinetics of the optical nonlinear response has been studied for wavelengths 400 and 800 nm. It is believed that the origin of nonlinearity at the wavelengths is related to the free-electron heating in the conduction band and their further thermalization via electron–electron scattering, but at 400 nm the contribution to the nonlinear susceptibility because of interband d → s, p transitions is also possible.  相似文献   

7.
In this study, a precise method to evaluate nonlinear optical absorption and refraction of materials using z-scan method based on Fresnel–Kirchhoff integral method (FK method) has been offered. The real electric field of a Gaussian beam passing through a nonlinear sample having both nonlinear absorption and refraction has been investigated using FK method. Subsequently, the z-scan curves have been studied. This is the first time that FK method has been used for calculating the nonlinear absorption coefficient. Additionally, an appropriate numerical curve-fitting method for calculating the nonlinear optical coefficients based on z-scan method has been suggested. Z-scan curves and nonlinear optical coefficients have been obtained for TiO2 nanoparticles in CW irradiation regime with the particle size ranges from 70 to 90 nm. This is the first experimental study which uses this analytical numerical method. Finally, all calculated results extracted from this new method have been compared with those of the previous methods.  相似文献   

8.
Photonic crystal all-optical switching is realized in two-dimensional nonlinear photonic crystals made of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]. Organic polymer films are fabricated by a slow evaporation method. Under resonant excitation, the organic matrix provides very large third-order nonlinear optical susceptibility. An operating pump energy as low as 514 pJ/cm2 and a high switching efficiency of 70% are achieved for the photonic crystal optical switching. A switching time of 45.6 ps is maintained due to fast Forster transfer of excitons.  相似文献   

9.
We report on optical and structural properties of α-Fe2O3 and Co3O4 thin films, grown by direct oxidation of pure metal films deposited on soda-lime glass. Structural characteristics and morphology of the films were investigated by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Linear optical absorption, and linear refraction as well as nonlinear optical properties were investigated. The third-order optical susceptibilities were measured applying the Thermally managed Z-scan technique using a Ti: sapphire laser (150 fs; 800 nm). The results obtained for the Co3O4 film were \( \text{Re} \chi^{\left( 3 \right)} \) = ?(5.7 ± 2.4) ×10?9 esu and \( \text{Im} \chi^{(3)} \) = ?(1.8 ± 0.2) ×10?8 esu while for the α-Fe2O3 film we determined \( \text{Re} \chi^{(3)} \) = +(6.6 ± 2.4) ×10?10 esu and \( \text{Im} \chi^{(3)} \) = +(2.2 ± 0.4) ×10?10 esu.  相似文献   

10.
Micro/nanostructured silver particles with different shapes (flower, wire, and rod) have been prepared and characterized. All the open aperture z-scan curves of silver microrods and silver nanoflowers present a typical reverse saturable absorption. With the increase of incident intensity, the nonlinear absorption coefficients and the third-order optical susceptibilities ImX(3) of nanoflowers increase, but those of silver microrods decrease. Moreover, the silver nanowires show the conversion from saturable absorption to reverse saturable absorption. There was no definite correlation between incident intensity and nonlinear absorption coefficient (β) under the conditions studied herein. And nonlinear optical properties of micro/nanostructured silver particles are dependent on the particle shape in suspensions at 800 nm.  相似文献   

11.
In this paper, the effect of hydrostatic pressure on both the intersubband optical absorption coefficients and the refractive index changes is studied for typical GaAs/Al x  Ga1?x As cubic quantum dot. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are calculated at different pressures as a function of the photon energy with known values of box length (L), the incident optical intensity (I), and Al concentration (x). According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficient and refractive index changes in a cubic quantum dot.  相似文献   

12.
The main achievements in our research on the physical phenomena of the excited-state nonlinear absorption in a molecular system and its applications in photonic technology are described. In the first part of this paper, some energy-level models and rate-equations are used to explain various mechanisms of the excited-state nonlinear absorption under differ-ent conditions, such as reverse saturable absorption caused by the triplet and/or the singlet excited-state absorption; saturable absorption due to the first and/or the second singlet excited-state absorption; and the excited-state nonlinear absorption induced by two-photon absorption. The experimental results for metal-organic and C60 materials irradiated by ps and ns laser pulses are consistent with the simulated curves of the transmittance versus flu-ences. In the second part, the applications of excited-state nonlinear absorption in photonic techniques including optical bistability, optical switching, optical limiting, optical modula-tion, optical logic and optical storage are introduced. The working principles of the photonic devices based on the excited-state nonlinear absorption are presented. The experimental characteristic curves are found in good agreement with the theoretical simulations for these devices.  相似文献   

13.
We present a comprehensive understanding of the nonlinear absorption characteristics of CdSe-based nanoplatelets(NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach through Z-scan techniques at 532 nm with picosecond pulses. The CdSe NPLs exhibit strong two-photon induced free carrier absorption(effective three-photon absorption) upon the nonresonant excitation, resulting in a remarkable optical limiting behavior with the limiting threshold of approximately 75 GW/cm~2. A nonlinear optical switching from saturable absorption(SA) to reverse saturable absorption(RSA) with increasing the laser intensity is observed when coating CdSe NPLs with a monolayer of CdS shell to realize the resonant absorption. The SA behavior originates from the ground state bleaching and the RSA behavior is attributed to the free carrier absorption.These findings explicitly demonstrate the potential applications of CdSe-based NPLs in nonlinear optoelectronics such as optical limiting devices, optical pulse compressors and optical switching devices.  相似文献   

14.
ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05–2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10?4 and 4.8 × 10?3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.  相似文献   

15.
The optical properties of Violet 1-doped polyvinyl alcohol (PVA) have been investigated using Wemble and Didomenico (WD) method. The optical constants such as refractive index n, the dispersion energy E d, the oscillation energy E 0, the lattice dielectric constant \(\varepsilon _{\infty } \), light frequency dielectric constant ε 0 and the ratio of carrier concentration to the effective mass N/m* have been determined using reflection spectra in the wavelength range 300–900 nm. The single- beam Z-scan technique was used to determine the nonlinear optical properties of Violet 1:polyvinylalcohol (PVA) thin film. The experiments were performed using continuous wave (cw) laser with a wavelength of 635 nm. The calculated nonlinear refractive index of the film, n 2 = ?2.79×10?7 cm2/W and nonlinear absorption coefficient, β = 6.31×10?3 cm /W. Optical limiting characteristics of the dye-doped polymer film was studied. The result reveals that Violet 1 can be a promising material for optical limiting applications.  相似文献   

16.
CO concentration and gas temperature distribution are diagnosed behind a strong shock wave simulating the Martian atmosphere entry processes by coupling optical emission spectroscopy (OES) and tunable diode laser absorption spectroscopy (TDLAS). The strong shock wave (6.31 ± 0.11 km/s) is established in a shock tube driven by combustion of hydrogen and oxygen. Temperature of the shock-heated gas is inferred through a precise analysis of the high temporal and spatial resolution experimental spectral of CN violet system (B 2 Σ + →X 2 Σ +, Δv = 0 sequence) using OES. A CO absorption line near 2,335.778 nm is utilized for detecting the CO concentration using scanned-wavelength direct absorption mode with 50 kHz repetition rate. Combined with temperature results from OES, CO concentration in the thermal equilibrium region is derived. The current experimental results are complementary for determining an accurate rate coefficient of CO2 dissociation and validation relevant chemical kinetics models in Mars atmosphere entry processes.  相似文献   

17.
Thin films of manganese (III) chloride 5,10,15,20-tetraphenyl-21H,23H-porphine (MnTPPCl) with different film thickness were deposited by an evaporation technique. Some optical constants were calculated for these films at a thickness of 110, 220 and 330 nm and annealing temperature of 373 and 437 K. IR spectrum demonstrating that the thermal evaporation method is a good one to acquire undissociated and stoichiometric MnTPPCl films. Our perceptions demonstrate that the mechanism of the optical absorption obeys with the indirect transition. It was found that the energy gap, Eg, affected by the film thickness and annealing. Dispersion of the refractive index is described using single oscillator model. Dispersion parameters are calculated as a function of the film thickness and annealing temperature. In addition, the third-order nonlinear susceptibility, χ(3), and the nonlinear refractive index, n2, were calculated.  相似文献   

18.
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.  相似文献   

19.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

20.
A femtosecond differential optical Kerr gate (DOKG) and Z-scan techniques, have been applied to investigate the third-order optical nonlinearity of composite film of the coordination complex [PdLPPh3] (L=N-(2-pyridyl)-N′-(salicylidene)hydrazine, PPh3=triphenylphosphine). Film exhibits superior nonlinear optical properties in the near-infrared spectral region. The nonlinear response time and third-order nonlinear optical susceptibility of complex were found to be≤90 fs and 3.9×10?10 esu, respectively. The Z-scan result shows that saturable absorption property of the film and its nonlinear absorption coefficient of the sample was found to be ?23 cm/GW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号