首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.  相似文献   

2.
A series of magnetic force microscopy tips with the synthetic structure consisting of two CoCrPt layers separated by a nonmagnetic Ru layer, which have the same magnetic layers but different thickness of the Ru layer, have been fabricated by sputtering. By analyzing the magnetic force microscopy images taken from the magnetic patterns recorded on longitudinal media, the performance of the tips was found to vary with the Ru thickness in an alternate fashion between enhanced and weakened responses. This phenomenon can be explained by the Ru thickness dependence of the exchange coupling between the two ferromagnetic layers and the corresponding frequency response of the trilayer tip. Synthetic tips with superior performances have been obtained after the Ru thickness was optimized.  相似文献   

3.
Magnetic force microscopy (MFM) can be used to image current distributions in current leads of sub-micron dimensions. Here we present a systematic study about the spatial and force resolution of such currents. In the case of force resolution, we studied the least measurable magnetic force of MFM for different sample currents. The analysis of images from parallel Al conducting plates are combined with those from force-distance curves and finite element calculations. Several interacting regimes between the magnetic tip and the currents are found and interpreted. It is shown that model calculations are necessary even for qualitative image interpretation. Then spatial resolution in the range of 100nm can well be obtained and quantitative studies of current distribution on widths of 10nm resolution are possible in special cases. The approach is demonstrated in imaging the current distribution in superconducting Bi2Sr2CaCu2O x single crystals. Presented at the VIII-th Symposium on Surface Physics, Třešt’ Castle, Czech Republic, June 28 – July 2, 1999. This work was supported in part by the Swiss Priority Program on Materials. The authors benefited greatly from discussions with D.A. Bonnell, B. Huey and C. Rüegg.  相似文献   

4.
A hydrophobic polymer tip for atomic force microscopy has been fabricated by two-photon adsorbed photopolymerization techniques and has been applied for the high resolution imaging of a hydrophilic metal surface. Using optimized photopolymerization conditions, we have succeeded in fabricating sub-100-nm sized polymer tips. This fabricating resolution of two-photon adsorbed photopolymerization is also confirmed by other supporting experiments. The imaging results show that the capillary-force-induced image distortion can be successfully removed by applying a pure hydrophobic polymer tip with a lateral resolution better than 5 nm, which is difficult to achieve with a commercial tip without any environmental control.  相似文献   

5.
6.
We demonstrate that well prepared and characterized Cr tips can provide atomic resolution on the bulk NaCl(001) surface with dynamic atomic force microscopy in the noncontact regime at relatively large tip-sample separations. At these conditions, the surface chemical structure can be resolved yet tip-surface instabilities are absent. Our calculations demonstrate that chemical identification is unambiguous, because the interaction is always largest above the anions. This conclusion is generally valid for other polar surfaces, and can thus provide a new practical route for straightforward interpretation of atomically resolved images.  相似文献   

7.
The possibility of using the dissipation mode in high-resolution atomic force microscopy is demonstrated. By the dissipation mode we mean the dynamic mode in which the cantilever oscillates at a resonance frequency and the oscillation amplitude serves as a signal of the feedback tracing a distance to the surface. The possibility of obtaining molecular resolution when scanning in air is shown. The procedure of choosing the optimum scanning parameters is considered.  相似文献   

8.
9.
We investigate the spin dynamics related to the Gilbert damping constant in infinite continuous thin films with perpendicular magnetic anisotropy (PMA), based on numerical and analytic approaches. We obtain the dynamic susceptibility of the infinite continuous thin films with various PMA energies by using micromagnetic simulations with periodic boundary conditions. These results are compared with the analytic solution that we derived from the Landau–Lifshitz–Gilbert equation. Based on our numerical and analytic studies, we support the physical analysis for results in the experimental determination of the Gilbert damping constant for PMA materials.  相似文献   

10.
11.
We consider a model for magnetic memory that consists of strongly coupled dipolar or antiferromagnetic (AF) pairs with inequivalent perpendicular anisotropy K1K1 and K2K2. For appropriate parameter values, determined in this work, they have two inequivalent storage states with zero net magnetic moment. Both analytical and numerical calculations are performed, in some cases yielding different results because of relaxation effects (i.e., a dependence on the damping parameter αα). Hysteresis loops for a wide variety of parameter values are obtained, both for the AF case and the dipole case. An Appendix gives analytic results for slightly non-collinear spins in an applied field, which were used to test the numerical results.  相似文献   

12.
13.
In a magnetic nanostripe, the effects of perpendicular magnetic anisotropy(PMA) on the current-driven horizontal motion of vortex wall along the stripe and the vertical motion of the vortex core are studied by micromagnetic simulations.The results show that the horizontal and vertical motion can generally be monotonously enhanced by PMA. However, when the current is small, a nonmonotonic phenomenon for the horizontal motion is found. Namely, the velocity of the horizontal motion firstly decreases and then increases with the increase of the PMA. We find that the reason for this is that the PMA can firstly increase and then decrease the confining force induced by the confining potential energy. In addition, the PMA always enhances the driving force induced by the current.  相似文献   

14.
Dynamic self-organization of magnetic domains is observed in amorphous gadolinium-cobalt films in narrow temperature intervals on both sides of the magnetic compensation point. Spiral dynamic domains form in a limited range of ac magnetic field amplitudes and frequencies. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 11, 688–692 (10 December 1997)  相似文献   

15.
The properties of a magnetic force microscopy (MFM) tip are very important for high-resolution magnetic imaging. In this work, micromagnetic models of tips are set up to study the effect of tip-coating microstructure, especially the randomness of anisotropy on tip edge and tip end, on the resolution of MFM. The effective coating height and the resolution potential of tips with various microstructures and magnetic properties have been characterized by investigating the obtained signals from high-density continuous granular thin film disk media with a bit size of 8×16 nm2 and bit-patterned media with a pattern period p of 50 nm. The magnetic moment distribution at the tip end should be perpendicular to the sample to realize a ‘magnetically sharp’ tip, which explains further the improved resolution in the recent experimental reports. Tips with well-controlled grain structure and magnetic anisotropy of coating materials can be applied to both high-density thin film disk media and bit-patterned media.  相似文献   

16.
In situ magnetic hysteresis measurements of magnetic tips in a magnetic force microscope (MFM) are demonstrated using alternating gradient force magnetometry. The measured magnetic moments of MFM tips are estimated in the range from 10−6 to 10−5 emu by this technique and the whole MFM tips in cantilevers are considered to be measured from the value of measured magnetic moments. The relationship between the magnetic hysteresis loops of MFM tips and those of coated magnetic films is discussed.  相似文献   

17.
FePt dot arrays with dot size down to 15 nm are fabricated by film annealing and patterning. The array coercivity shows an increase with dot size decreasing from 100 to 30 nm, and a slight reduction for the 15 nm dot sample. Annealing these dot arrays at higher temperatures results in large enhancements in the coercivities, except the 15 nm dot array where the coercivity increases a little. Micromagnetic models of a 15 nm FePt dot with uniform and nonuniform edges of soft magnetic defects and with inside defects are calculated to reveal the microstructure origins of the dot magnetic properties. It is found that the volume fraction of the L10-phase FePt with perpendicular c-axis orientation is about 50% in the dot and the switching field distribution of the dot array can be influenced significantly by the defect arrangement in the dots.  相似文献   

18.
By visualization of the Barkhausen effect using magnetic force microscopy we are able to provide detailed information about the physical principles that govern the magnetization reversal of a granular ferromagnetic thin film with perpendicular anisotropy. Individual Barkhausen volumes are localized and distinguished as either newly nucleated or grown by domain wall propagation. The Gaussian size distribution of nucleated Barkhausen volumes indicates an uncorrelated random process, while grown Barkhausen volumes exhibit an inverse power law distribution, which points towards a critical behavior during domain wall motion.  相似文献   

19.
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy(PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions(P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.  相似文献   

20.
The atomic-scale stability of clean silicon tips used in noncontact atomic force microscopy (NC-AFM) is simulated by ab initio calculations based on density functional theory. The tip structures are modeled by silicon clusters with and termination. For the often assumed Si(111)-type tip we observe the sharpening of the initially blunt tip via short-range chemical forces during the first approach and retraction cycle. The structural changes corresponding to this intrinsic process are irreversible and lead to stable NC-AFM imaging conditions. In opposition to the picture used in literature, the Si(001)-type tip does not exhibit the so-called "two-dangling bond" feature as a bulklike termination suggests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号