首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ph. Guaino 《Surface science》2007,601(13):2684-2687
Electrical conduction of tungsten oxide nanorods has been characterized by conductive atomic force microscopy (C-AFM). The conduction measurements were carried out in air using a conductive P+-type diamond-coated tip. This technique allows either the simultaneous measuring of the topography and the special current distribution or the recording of the current voltage distribution in a single point mode. We have proposed an equivalent electrical circuit which allows us to understand the I(V) curves. During C-AFM observations we have observed significant changes in image contrast and hysteresis in the I(V) characteristics which depend on the applied bias voltage. The bias dependence effect is interpreted as being due to a local oxidation-reduction phenomenon induced by the tip in the presence of water.  相似文献   

2.
The anti-clockwise bipolar resistive switching in Ag/NiO/ITO (Indium–Tin–Oxide) heterojunctional thin film assembly is investigated. A sequential voltage sweep in 0 → V max → 0 → ?V min → 0 order shows intrinsic hysteresis behaviour and resistive switching in current density (J)–voltage (V) measurements at room temperature. Switching is induced by possible rupture and recovery of the conducting filaments in NiO layer mediated by oxygen ion migration and interfacial effects at NiO/ITO junction. In the high-resistance OFF-state space charge limited current passes through the filamentary path created by oxygen ion vacancies. In OFF-state, the resistive switching behaviour is attributed to trapping and detrapping processes in shallow trap states mostly consisting of oxygen vacancies. The slope of Log I vs Log V plots, in shallow trap region of space charge limited conduction is ~2 (I ∝ V 2) followed by trap-filled and trap-free conduction. In the low-resistance ON-state, the observed electrical features are governed by the ohmic conduction.  相似文献   

3.
In this paper, organic thin films of a donor-acceptor material N,N′-bis[4-(1,1-dicyanovinyl)phenyl]N,N′-bis(4-fluorophenyl)benzidine (TPD-FCN) were prepared by a vacuum vapor deposition method. The N,N,N′,N′-tetraphenylbenzidine moiety can be served as an excellent nonplanar electron donor and the 1,1-dicyanovinyl group is an excellent electron acceptor. The typical macroscopic IV curves of the device based on TPD-FCN thin film exhibit a bistable resistive switching characteristics for memory application. Furthermore, stable nanoscale electrical information storage was achieved on the TPD-FCN thin film by scanning tunneling microscopy. The average size of the recorded marks is about 10 nm. Local IV characteristics suggest that the formation of the recording dots is due to the local change of electrical property of the thin film, and the intermolecular charge transfer induced by an electric field is proposed as the reason for the information dot formation. The results indicate that TPD-FCN is a promising candidate for nanoscale recording materials.  相似文献   

4.
In this study, the electrical conduction and bipolar switching properties in transparent vanadium oxide thin films are investigated and discussed. (110)-oriented vanadium oxide thin films were well deposited onto transparent ITO substrates for the possible development of applications in the structure of system-on-panel devices. For the as-deposited vanadium oxide thin films, they were prepared for 1 h by a rf magnetron sputtering method of rf power 130 W, chamber pressure 10 mTorr, substrate temperature 550 °C, and different oxygen concentrations. In addition, the Al/V2O5/ITO device presents reliable and bipolar switching behavior. The on/off ratio and switching cycling of two stable states are found and discussed. We suggest that the current–voltage characteristics are governed by ohmic contact and Poole?Frankel emission transport model mechanisms in low- and high-voltage regions, respectively.  相似文献   

5.
This study demonstrates quantum-dot light-emitting diodes (QD-LEDs) with a function of resistive switching memory, capable of on/off operation at the same driving current depending on reset/set state. The QD-LEDs were fabricated by spin-coating process and experienced two different annealing conditions, which yielded defective or less-defective V2O5–x layer. One of the annealing conditions produced QD-LEDs with the unusual electrical behaviors of negative differential resistance (NDR), capacitance oscillation, and voltage–current hysteresis curves, signifying so-called resistive switching characteristics. X-ray and ultraviolet photoelectron spectroscopies were used to examine the chemical state of the differently annealed V2O5–x layers. The less stoichiometric V2O5–x layer was found to be responsible for the resistive switching behaviors of the NDR and the low and high resistance states (LRS and HRS, respectively). We discuss the LRS/HRS of V2O5–x for resistive switching in terms of a conductive filament effect, induced by microstructural changes caused by oxygen drift and vacancy annihilation processes in the high defect density V2O5–x layer.  相似文献   

6.
A current-controlled memristive one-port was constructed from cobalt monoxide (CoO) using a traditional solid reaction method at 1150 °C in argon atmosphere. Hysteretic current–voltage (IV) characteristics and resistance switching were investigated in the as-obtained Ag/CoO/Ag cell. Dependences of the IV loop on voltage range (0 to 10, 11, and 12 V), voltage scan rate (0.1, 1, and 10 V/s), and temperature (323, 373, and 423 K) were reported. A thermistor model for materials with negative temperature coefficient (NTC) was proposed for explanation of the mechanism. An ideal NTC thermistor-based memristive one-port would broaden the applications of memristors and memristive devices.  相似文献   

7.
Current transport properties of thin Ag–SiO2granular films were studied. In spite of very simple device structures (i.e., just sandwiching the granular film with Al electrodes), clear Coulomb blockade and Coulomb staircase structures were observed in the current–voltage (IV) characteristics. The observedIVcharacteristics were qualitatively explained by a double-barrier and a triple-barrier tunnel-junction model.  相似文献   

8.
ZnO/Cu2O thin film n–i–p heterojunctions were fabricated by magnetron sputtering. The microstructure, optical, and electrical properties of n-type (n) ZnO, insulating (i) ZnO, and p-type (p) Cu2O films deposited on glass substrates were characterized by X-Ray diffraction (XRD), spectrophotometer, and the van der Pauw method, respectively. XRD results show that the mean grain size of i-ZnO film is much larger than that of n-ZnO film. The optical band gap energies of n-ZnO, i-ZnO, and p-Cu2O film are 3.27, 3.47, and 2.00 eV, respectively. The carrier concentration of n-ZnO film is two orders of magnitude larger than that of p-Cu2O film. The current–voltage (IV) characteristics of ZnO/Cu2O thin film n–i–p heterojunctions with different i-ZnO film thicknesses were investigated. Results show that ZnO/Cu2O n–i–p heterojunctions have well-defined rectifying behavior. All ideality factors of these n–i–p heterojunctions are larger than 2.0. The forward bias threshold voltage and ideality factor increase when i-ZnO layer thickness increases from 100 to 200 nm. An energy band diagram was proposed to analyze the IV characteristics of these n–i–p heterojunctions.  相似文献   

9.
A stoichiometry CdTe nano-structured powder was synthesized by chemical process. Thin films of different thicknesses (40, 60, and 100 nm) of CdTe were prepared by thermal evaporation method onto silicon substrates. Current–voltage (I–V) and capacitance–voltage (C–V) characteristics of CdTe nanocrystalline thin films deposited on p-Si as heterojunction have been investigated. At low voltages, current in the forward direction was found to obey the diode equation and the conduction was controlled by thermionic emission mechanism. Also, various electrical parameters were determined from the I–V and C–V analysis. The thickness dependence of the obtained capacitance–voltage (C–V) characteristics was also considered.  相似文献   

10.
ZnO and indium-doped ZnO (IxZO) thin films were prepared on silica-glass substrates by the sol-gel method. The thin films were crystallized at 600 °C and 700 °C for 1 h in 6.9 × 10−1 Torr under pure O2 atmosphere. The analyzed results were compared to investigate the structural characteristics and optical properties. The surface morphology of the IxZO films was different from that of the ZnO films, and showed a thin overlay structure. In addition, the crystallization of IxZO film was depleted at higher crystallized temperatures. From XRD analysis, the ZnO and IxZO thin films possessed hexagonal structures. Notably, micro-In2O3 phases were observed in the IxZO thin films using EDS. Both of In2O3 phases and the crystallization mechanism not only improved the peeling of structure, but also improved the electrical conductivity of IxZO thin films. For the PL spectrum, the optical property of the IxZO film was raised at a higher crystallization temperature. Although the In2O3 phases reduced the structural defects of IxZO thin film, the optical effect of the residual In3+ was not enhanced completely at higher crystallized temperatures.  相似文献   

11.
Zinc-Tin-Oxide (ZTO) thin films were fabricated using a simple and eco-friendly sol-gel method and their application in thin film transistors (TFTs) was investigated. Annealing temperature has a crucial influence on the structure and electrical properties of sol-gel ZTO thin films. The ZTO thin films annealed at 300–600?°C revealed smooth and uniform surfaces with amorphous state, in addition, a high optical transparency over 90% of the ZTO films in the visible range was obtained. The electrical performance of ZTO TFTs showed obvious dependence on annealing temperature. The ZTO TFTs annealed at 500?°C showed a high carrier mobility of 5.9?cm2/V, high on/off current ratio (Ion/off) of 106-107, and threshold voltage (Vth) of 1.03?V. To demonstrate the application of sol-gel ZTO films in low-power display fields, we also fabricated ZTO TFTs with a solution-processed high-permittivity (high-k) ZrTiOx dielectric layer. The ZTO/ZrTiOx TFTs showed high mobility of 17.9?cm2/V and Ion/off of 105-106?at a low operation voltage of 3?V, indicating that Indium-free ZTO thin films would be potential candidates for low cost, high performance oxide TFT devices.  相似文献   

12.
The effect of nickel phthalocyanine (NiPc) organic interlayer on the electronic parameters of Au/n-InP Schottky contacts has been investigated using current–voltage (IV) and capacitance–voltage (CV) measurements. Measurements showed that the barrier heights and ideality factors are 0.58 eV (IV), 0.69 eV(CV) and 1.32 for Au/n-InP Schottky contact and 0.80 eV (IV), 1.12 eV (CV) and 1.73 for Au/NiPc/n-InP Schottky contact, respectively. Experimental results show that the interfacial layer of NiPc increases the effective barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. Further, Cheung’s and modified Norde functions are used to extract the barrier height, series resistance and ideality factors. The discrepancy between barrier heights estimated from IV to CV methods is also explained. Moreover, the energy distribution of interface state density is determined from the forward bias IV data. Results show that the interface states and series resistance play an important role on electrical properties of the structures studied. The reverse leakage current conduction mechanism is investigated. Results reveal that the Schottky conduction mechanism is found to be dominant in the Au/n-InP Schottky contact. However, in the case of Au/NiPc/n-InP Schottky contact, the Schottky conduction mechanism is found to be dominant in the higher bias region, while Poole–Frenkel conduction is found to be dominant in the lower bias region.  相似文献   

13.
The recent observations of bright visible electroluminescence (EL) from electroformed thin film silicon based wide-gap alloys are further clamped down in a simpler structure. For this purpose, a standard quality, ordinary hydrogenated amorphous silicon (a-Si:H) homojunction pin diode was fabricated by plasma enhanced chemical vapor deposition. The fresh diode was characterized by temperature scanned current–voltage (IV) and constant photocurrent measurements. The energy distribution of density of states within the forbidden gap of the intrinsic a-Si:H layer was determined by space charge limited current and optical absorption spectroscopies. Then the diode was intentionally subjected to a sufficiently high, calibrated electric field leading to its Joule heating assisted rapid crystallization at ambient atmosphere. The fresh and the formed diodes exhibit different IV and EL characteristics. The current density of the formed diode increases drastically at low voltages while remaining unchanged at high voltages when compared to that of the fresh diode. Parallelly, the room temperature EL intensity under a particular current stress is boosted with electroforming. These interesting phenomena have been discussed in the frame of a self-consistent model.  相似文献   

14.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

15.
A. Hmood  A. Kadhim  H. Abu Hassan 《Ionics》2013,19(9):1309-1315
In the present study, p-Pb0.94Yb0.06Se:Se and n-Pb0.94Yb0.06Se powders were used in a standard synthesized solid-state microwave method of fabricating thermally evaporated thin films. The nanostructure and composition of the films were studied using X-ray diffraction, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The electrical characterizations of the as-deposited film in terms of the Seebeck coefficient, electrical conductivity, and power factor were conducted within the temperature range of 298 K to 523 K. The micro-thermoelectric devices were composed of 20 pairs and 10 pairs of p-Pb0.94Yb0.06Se:Se and n-Pb0.94Yb0.06Se thin films on glass substrates, respectively. The 20 pairs of p–n thermocouples in series generated a maximum open-circuit voltage output (V oc) of 137.84 mV and a maximum output power (P out) of 25.85 nW at a temperature difference ?T?=?115 K, whereas the 10 pairs of p–n thermocouples generated 84.18 mV and 12.21 nW maximum V oc and maximum P out, respectively, at ?T?=?128 K.  相似文献   

16.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   

17.
The resistive switching effect in metal–oxide–metal (MOM) structures has been investigated, where the 10% Li-doped ZnO layer was used as an oxide layer, as well as Pt and 20% fluorine doped SnO2 (SnO2:F) were used as a bottom electrodes. The current–voltage (IV) and switching (It) characteristics of Ag/ZnO:Li/Pt and Ag/ZnO:Li/SnO2:F structures were investigated. The unipolar resistive switching is detected in the structures with the Pt, while the use of transparent conductive SnO2:F electrode instead of Pt, results to the bipolar memory effect.  相似文献   

18.
The current–voltage (IV) characteristics of individual nanofibres of doped polyacetylene show a dramatic change from very strong nonlinearities for lightly-doped samples at low temperatures, to nearly ohmic behaviour for higher temperatures and doping levels. At low temperatures (below 10–30 K), the IV characteristics are independent of temperature and follow the expression for Zener-type tunnelling, as predicted for field-induced tunnelling of the conjugated bond system. At higher temperatures, the IV characteristics deviate from Zener-type behaviour and the current increases with temperature as thermally-assisted conduction mechanisms become important. The IV characteristics for the most conductive sample are consistent with our calculations of fluctuation-induced tunnelling.  相似文献   

19.
During a surface treatment using CF4/O2 gas plasma, energetic ions affected the defect structures on the top surface of ITO thin films. C-AFM and local I-V measurements showed the formation of the depleted layer after a plasma treatment with a bias of 20 W; XPS showed the creation of new defect structures. Donor concentration in the damaged top surface of the ITO films was found to be decreased. Sn-based neutral defect complexes and reduced oxygen, which could trap the electrons, have been proposed to be formed. This can also explain the increase of the work function of ITO.  相似文献   

20.
Chemical vapor deposition-based sulfur passivation using hydrogen sulfide is carried out on both n-type and p-type Si(100) wafers. Al contacts are fabricated on sulfur-passivated Si(100) wafers and the resultant Schottky barriers are characterized with current–voltage (IV), capacitance–voltage (CV) and activation-energy methods. Al/S-passivated n-type Si(100) junctions exhibit ohmic behavior with a barrier height of <0.078 eV by the IV method and significantly lower than 0.08 eV by the activation-energy method. For Al/S-passivated p-type Si(100) junctions, the barrier height is ~0.77 eV by IV and activation-energy methods and 1.14 eV by the CV method. The discrepancy between CV and other methods is explained by image force-induced barrier lowering and edge-leakage current. The IV behavior of an Al/S-passivated p-type Si(100) junction remains largely unchanged after 300 °C annealing in air. It is also discovered that heating the S-passivated Si(100) wafer before Al deposition significantly improves the thermal stability of an Al/S-passivated n-type Si(100) junction to 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号