首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
邓光荣  梁亮  李晨阳  刘长鹏  葛君杰  邢巍 《应用化学》2019,36(10):1211-1220
甲醇溶液浓度对于直接甲醇燃料电池(DMFC)的性能具有重要影响。 本文旨在建立一种能在电源系统中有效控制甲醇浓度的策略。 通过构建电池内甲醇物料守恒和热守恒方程,确定了基于电量和温度这两个参数的甲醇浓度控制策略。 通过测试温度-浓度关系验证了控制策略的可行性。 结果表明,采用该策略,DMFC电源系统稳定运行超过420 min;合适的甲醇浓度范围为0.70~0.87 mol/L。 该策略完成了甲醇浓度控制的目标,并将在电源系统中发挥重要作用。  相似文献   

2.
直接甲醇燃料电池阴极电催化剂的研究进展   总被引:8,自引:0,他引:8  
直接甲醇燃料电池(DMFC)功率密度高,燃料甲醇价格低廉、储存和携带方便,特别适合作为电动车和小型电子设备的电源,是目前燃料电池研究领域的一个热点。本文介绍了40年来DMFC阴极电催化剂的发展历史及现状,并针对目前严重影响DMFC性能的“甲醇透过”问题,阐述了研制耐甲醇阴极电催化剂的重要性,讨论了今后DMFC阴极电催化剂的发展趋势。  相似文献   

3.
依据单电池测试结果和甲醇传质理论考察了甲醇溶液的浓度对被动式自呼吸直接甲醇燃料电池(DMFC)性能的影响.研究结果表明,电池的法拉第效率和能量转化效率会随着浓度的增大而降低,采用4mol/L的甲醇溶液实现了最大的放电功率13.9mW/cm^2,并能在60mA下稳定放电长达20h.这取决于电池运行过程中电极内部的甲醇传质和甲醇透过的共同作用.  相似文献   

4.
光电催化氧化甲醇电极   总被引:2,自引:0,他引:2  
直接甲醇燃料电池 (DMFC)可直接利用甲醇 ,无须中间转化装置 ,具有系统结构简单、体积能量密度高、燃料补充方便等优点 .从提高电流密度和稳定催化剂本征活性这两方面来看 ,DMFC需要解决的关键问题是使甲醇直接氧化的阳极材料 .近年来有关此类阳极材料的制备与催化性能的研究报道日益增多 [1,2 ] ,但都是单纯地从光催化或电催化的角度出发 .本文提出一种利用 Ti O2 为光催化剂 ,Pt- Ru为电催化剂 ,试图将光催化与电催化反应发生于一体 ,使甲醇能得到联合的催化氧化作用 ;同时为了能进一步增加Ti O2 的光催化氧化能力 ,改变 Ti O2 - n…  相似文献   

5.
游梦迪  程璇  刘连  张璐 《电化学》2006,12(2):148-153
设计并建立甲醇渗透测试体系和模拟直接甲醇燃料电池(DMFC)运行体系,分别考察静态条件下H-cell中甲醇的渗透和运行条件下甲醇渗透对OCV的影响.循环伏安和计时电流法测试表明:随着渗透时间的延长,阴极侧的甲醇浓度增加;甲醇浓度增加,氧化峰电流增大,峰电位正移,氢在电极表面的吸脱附受到抑制,同时甲醇的正向氧化电流曲线出现肩峰.模拟DMFC实验测试结果表明:OCV先逐渐上升,接着发生突降,大约1.5 h后趋于稳定.  相似文献   

6.
直接甲醇燃料电池用磺化聚醚醚酮膜初探   总被引:1,自引:0,他引:1  
应用电化学方法研究了SPEEK膜的甲醇渗透性能.SPEEK膜具有比Nafion115膜低的甲醇渗透.以其作质子交换膜电解质组装的直接甲醇燃料电池(DMFCs)开路电压高于Nafion115膜组装的DMFC开路电压,但电池的放电性能尚待改进.本研究可为SPEEK应用于直接甲醇燃料电池提供一定的依据.  相似文献   

7.
直接甲醇燃料电池(DMFC)是将燃料(甲醇)和氧化剂(氧气或空气)的化学能直接转化为电能的装置,它体积小、环境污染小、性能可靠,具有广阔的应用前景.甲醇分子反应活性较低,具有较高的极化电位,因此阳极催化剂是DMFC研究的重要内容.目前阳极催化剂往往采用大量的贵金属(如铂),这不可避免地增加了DMFC的成本,限制了DMFC的应用范围~([1]).  相似文献   

8.
通过测定甲醇渗透率,详细研究了阳极支撑层的聚四氟乙烯(PTFE)含量对全被动式直接甲醇燃料电池(DMFC)甲醇传质和电池性能的影响。 膜电极集合体均使用相同的阳极催化层,膜和阴极。 实验结果表明,随着阳极支撑层PTFE含量的提高,甲醇渗透速率明显减小。 其含量较高时,甲醇传质阻力较大,会导致电池在很低的电流密度下就出现传质控制区。 采用PTFE质量分数为40%的支撑层时,DMFC以9 mol/L甲醇为燃料最大功率密度可达32×10-3 W/cm2,也进一步证明了适当提高阳极支撑层的憎水性,既有助于减少甲醇的渗透,又缓解了阴极的“水淹”问题。  相似文献   

9.
直接甲醇燃料电池中质子交换膜的研究进展   总被引:2,自引:0,他引:2  
质子交换膜是直接甲醇燃料电池(DMFC)的关键部件之一. 本文系统地介绍了近三年来DMFC中质子交换膜研究的最新进展.  相似文献   

10.
林玲  朱青  徐安武 《化学进展》2015,27(9):1147-1157
直接甲醇燃料电池(DMFC)由于其结构简单、能量密度高、易携带、无污染等优点,成为燃料电池未来发展的方向。阳极和阴极催化剂的活性和稳定性是决定DMFC性能、寿命和成本的关键。然而,商业催化剂铂(Pt)的低储量和高成本限制了DMFC的广泛应用,同时,非铂类催化剂的活性和稳定性还需要进一步提高,以达到商业化应用的要求。本文综述了近年来国内外DMFC阳极和阴极催化剂的最新研究进展。首先,对于阳极甲醇氧化催化剂,分别对Pt基催化剂的改性和非Pt类催化剂的研究进展进行了详细介绍;其次,概述了Pt基阴极氧还原催化剂的改性和非Pt阴极催化剂的发展现状;此外,对于催化剂与载体的强相互作用产生的协同效应进行了总结论述;最后,对直接甲醇燃料电池阳极和阴极催化剂的发展前景进行了展望。  相似文献   

11.
唐志诚  吕功煊 《化学进展》2007,19(9):1301-1312
直接甲醇燃料电池作为未来清洁的动力能源,由于具有下列优点:操作温度低(<100℃)、燃料易储存和运输、能量效率高、污染低和燃料启动快而受到人们广泛的关注。阳极电催化剂是直接甲醇燃料电池最重要的组成部分。本文综述了近三年来直接甲醇燃料电池阳极电催化剂最新的研究进展,主要对催化剂制备方法、新型碳载体材料、催化剂类型作了详细的评述,展望了未来甲醇电催化氧化催化剂的发展,指出了电催化剂面临的问题。  相似文献   

12.
王新东  王一拓  刘桂成  王萌  田哲 《电化学》2013,19(3):246-255
直接甲醇燃料电池以其独特的优势被业界人士视为本世纪最有可能实现商业化的燃料电池. 因此,众多研究院所和公司展开了深入研究,取得了瞩目的成就. 本文分析了膜电极结构的电催化和多孔电极传质过程的机制,并结合制备工艺、有序多层结构以及电池内部传输过程,讨论了近年来膜电极在直接甲醇燃料电池相关的研究进展.  相似文献   

13.
直接甲醇燃料电池阴极催化剂的研究进展   总被引:2,自引:0,他引:2  
直接甲醇燃料电池阴极催化剂的研究进展;直接甲醇燃料电池;阴极催化剂;氧还原;耐甲醇  相似文献   

14.
膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件。文中对MEA的研究现状从4个方面进行了详细评述。首先,对组成MEA的关键材料,如电催化剂、质子交换膜、扩散层的研究进展进行了介绍,认为开发低温高效、贵金属载量低的电催化剂以及研制低成本、低甲醇渗透的非氟质子交换膜是MEA关键材料的研究方向。第二,对于MEA的制备方法,文中对以GDL为支撑体的GDE法和以PEM为支撑体的CCM法进行了详细的评述,认为CCM法是今后MEA制备工艺的重要发展方向。第三,关于MEA的表征技术,认为采用电化学方法结合现代谱学技术仍是未来一段时间对MEA表征的主要手段。第四,介绍了MEA数学模型的研究现状,DMFC数学模型的研究是以PEMFC的模型为基础建立起来的,但是建立DMFC的数学模型更为复杂,认为今后对DMFC膜电极模型的研究要充分考虑阳极二氧化碳与甲醇水溶液的两相流问题以及阴极甲醇渗透对电池性能影响的问题。最后,对直接甲醇燃料电池膜电极未来的发展进行了展望。  相似文献   

15.
直接甲醇燃料电池的研究进展   总被引:3,自引:0,他引:3  
电催化剂;质子交换膜;膜电极集合体;电池性能;综述;直接甲醇燃料电池的研究进展  相似文献   

16.
低甲醇透过直接甲醇燃料电池   总被引:6,自引:0,他引:6  
复合膜;甲醇透过率;低甲醇透过直接甲醇燃料电池  相似文献   

17.
杂多酸修饰的电极对于甲醇电氧化的促进作用   总被引:4,自引:0,他引:4  
采用杂多酸修饰光滑铂电极,研究其对甲醇电催化氧化的作用,发现与未修饰光滑铂电极相比,分别经磷钨酸和硅钨酸修饰的电极上甲醇电催化氧化速率明显增加.  相似文献   

18.
直接甲醇燃料电池(DMFC)通常采用空气中氧气作为氧化剂,但空气中硫化物、氮化物等污染物会对电池性能造成影响. 本文采用恒流放电曲线、极化曲线、循环伏安扫描(CV)和电化学阻抗谱(EIS)等方法,研究SO2对DMFC电池性能影响,分析其毒化作用机制. 研究表明,SO2毒化导致催化剂电化学活性面积(ECSA)减小,氧还原反应(ORR)电荷转移电阻增大,从而造成DMFC电池开路电压和工作电压加速衰减,峰值功率密度减小. 进一步探究了三种恢复策略,空气吹扫与I-V变载操作都只能实现电池性能的部分恢复,CV扫描可完全恢复电池性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号