首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various functional equations satisfied by one or two (N × N)-matrices \({\mathbf{F}(z) }\) and \({\mathbf{G}(z) }\) depending on the scalar variable z are investigated, with N an arbitrary positive integer. Some of these functional equations are generalizations to the matrix case (N > 1) of well-known functional equations valid in the scalar (N = 1) case, such as \({\mathbf{F}(x) \, \mathbf{F}(y) = \, \mathbf{F}(x y) \, \rm and \, \mathbf{G}({\it x}) \, \mathbf{G}({\it y}) = \mathbf{G}({\it x+y}) }\); others—such as \({\mathbf{G}(y) \, \mathbf{F}(x) = \mathbf{F}(x) \, \mathbf{G}(xy) }\)—possess nontrivial solutions only in the matrix case (N > 1), namely their scalar (N = 1) counterparts only feature quite trivial solutions. It is also pointed out that if two (N × N)-matrices \({\mathbf{F}(x) \, \rm and \, \mathbf{G}({\it y})}\) satisfy the triplet of functional equations written above—and nontrivial examples of such matrices are exhibited— then they also satisfy an endless hierarchy of matrix functional relations involving an increasing number of scalar independent variables, the first items of which read \({\mathbf{F}(x_{1}) \, \mathbf{G}(y_{1}) \, \mathbf{F} (x_{2}) = \mathbf{F}(x_{1} x_{2}) \, \mathbf{G } (x_{2} y_{1}) \, \rm and \, \mathbf{G}({\it y}_{1}) \, \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it y}_{2}) = \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it x}_{1} {\it y}_{1}+{\it y}_{2}) }\).  相似文献   

2.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

3.
Consider an arithmetic group \({\mathbf{G}(O_S)}\), where \({\mathbf{G}}\) is an affine group scheme with connected, simply connected absolutely almost simple generic fiber, defined over the ring of S-integers O S of a number field K with respect to a finite set of places S. For each \({n \in \mathbb{N}}\), let \({R_n(\mathbf{G}(O_S))}\) denote the number of irreducible complex representations of \({\mathbf{G}(O_S)}\) of dimension at most n. The degree of representation growth \({\alpha(\mathbf{G}(O_S)) = \lim_{n \rightarrow\infty}\log R_n(\mathbf{G}(O_S)) / \log n}\) is finite if and only if \({\mathbf{G}(O_S)}\) has the weak Congruence Subgroup Property. We establish that for every \({\mathbf{G}(O_S)}\) with the weak Congruence Subgroup Property the invariant \({\alpha(\mathbf{G}(O_S))}\) is already determined by the absolute root system of \({\mathbf{G}}\). To show this we demonstrate that the abscissae of convergence of the representation zeta functions of such groups are invariant under base extensions \({K{\subset}L}\). We deduce from our result a variant of a conjecture of Larsen and Lubotzky regarding the representation growth of irreducible lattices in higher rank semi-simple groups. In particular, this reduces Larsen and Lubotzky’s conjecture to Serre’s conjecture on the weak Congruence Subgroup Property, which it refines.  相似文献   

4.
We consider the nonlinear curl-curl problem \({\nabla\times\nabla\times U + V(x) U= \Gamma(x)|U|^{p-1}U}\) in \({\mathbb{R}^3}\) related to the Kerr nonlinear Maxwell equations for fully localized monochromatic fields. We search for solutions as minimizers (ground states) of the corresponding energy functional defined on subspaces (defocusing case) or natural constraints (focusing case) of \({H({\rm curl};\mathbb{R}^3)}\). Under a cylindrical symmetry assumption corresponding to a photonic fiber geometry on the functions V and \({\Gamma}\) the variational problem can be posed in a symmetric subspace of \({H({\rm curl};\mathbb{R}^3)}\). For a defocusing case \({{\rm sup} \Gamma < 0}\) with large negative values of \({\Gamma}\) at infinity we obtain ground states by the direct minimization method. For the focusing case \({{\rm inf} \Gamma > 0}\) the concentration compactness principle produces ground states under the assumption that zero lies outside the spectrum of the linear operator \({\nabla \times \nabla \times +V(x)}\). Examples of cylindrically symmetric functions V are provided for which this holds.  相似文献   

5.
Let \(L=-\mathrm{div}(A\nabla )\) be a second order divergence form elliptic operator and A an accretive \(n\times n\) matrix with bounded measurable complex coefficients in \({\mathbb R}^n\). Let \(\nabla b\in L^n({\mathbb R}^n)\,(n>2)\). In this paper, we prove that the commutator generated by b and the square root of L, which is defined by \([b,\sqrt{L}]f(x)=b(x)\sqrt{L}f(x)-\sqrt{L}(bf)(x)\), is bounded from the homogenous Sobolev space \({\dot{L}}_1^2({\mathbb R}^n)\) to \(L^2({\mathbb R}^n)\).  相似文献   

6.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

7.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

8.
We present methods for computing the explicit decomposition of the minimal simple affine W-algebra \({W_k(\mathfrak{g}, \theta)}\) as a module for its maximal affine subalgebra \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) at a conformal level k, that is, whenever the Virasoro vectors of \({W_k(\mathfrak{g}, \theta)}\) and \({\mathscr{V}_k(\mathfrak{g}^\natural)}\) coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when \({\mathfrak{g}^{\natural}}\) is a semisimple Lie algebra, we show that, for a suitable conformal level k, \({W_k(\mathfrak{g}, \theta)}\) is isomorphic to an extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) by its simple module. We are able to prove that in certain cases \({W_k(\mathfrak{g}, \theta)}\) is a simple current extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\). In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra \({W_{k}(\mathit{sl}(4), \theta)}\) at k = ?8/3. We prove, as conjectured in [3], that \({W_{k}(\mathit{sl}(4), \theta)}\) is isomorphic to the vertex algebra \({\mathscr{R}^{(3)}}\), and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra \({V_k (\mathit{sl}(n))}\) at certain admissible levels and for \({V_k (\mathit{sl}(m \vert n)), m\ne n, m,n\geq 1}\) at arbitrary levels.  相似文献   

9.
Let \({\phi : M \to R^{n+p}(c)}\) be an n-dimensional submanifold in an (n + p)-dimensional space form R n+p(c) with the induced metric g. Willmore functional of \({\phi}\) is \({W(\phi) = \int_{M}(S - nH^{2})^{n/2}dv}\) , where \({S = \sum_{\alpha,i, j}(h^{\alpha}_{ij} )^2}\) is the square of the length of the second fundamental form, H is the mean curvature of M. The Weyl functional of (M, g) is \({\nu(g) = \int_{M}|W_{g}|^{n/2}dv}\) , where \({|W_{g}|^{2} = \sum_{i, j,k,l} W^{2}_{ijkl}}\) and W ijkl are the components of the Weyl curvature tensor W g of (M, g). In this paper, we discover an inequality relation between Willmore functional \({W(\phi)}\) and Weyl funtional ν(g).  相似文献   

10.
We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).  相似文献   

11.
Chaudhry et al. (J Stat Plann Inference 106:303–327, 2002) have examined the existence of BRD(v, 5, λ)s for \({\lambda \in \{4, 10, 20\}}\). In addition, Ge et al. (J Combin Math Combin Comput 46:3–45, 2003) have investigated the existence of \({{\rm GBRD}(v,4,\lambda; \mathbb{G}){\rm s}}\) when \({\mathbb{G}}\) is a direct product of cyclic groups of prime orders. For the first problem, necessary existence conditions are (i) v ≥ 5, (ii) λ(v ? 1) ≡ 0 (mod4), (iii) λ v(v ? 1) ≡ 0 (mod 40), (iv) λ ≡ 0 (mod 2). We show these are sufficient, except for \({v=5, \lambda \in \{4,10\}}\). For the second problem, we improve the known existence results. Five necessary existence conditions are (i) v ≥ 4, (ii) \({\lambda \equiv 0\;({\rm mod}\,|\mathbb{G}|)}\), (iii) λ(v ? 1) ≡ 0 (mod 3), (iv) λ v(v ? 1) ≡ 0 (mod 4), (v) if v = 4 and \({|\mathbb{G}| \equiv 2\;({\rm mod}\,4)}\) then λ ≡ 0 (mod 4). We show these conditions are sufficient, except for \({\lambda = |\mathbb{G}|, (v,|\mathbb{G}|) \in \{(4,3), (10,2), (5,6), (7,4)\}}\) and possibly for \({\lambda = |\mathbb{G}|, (v,|\mathbb{G}|) \in \{(10,2h), (5,6h), (7,4h)\}}\) with h ≡ 1 or 5 (mod 6), h > 1.  相似文献   

12.
Let R be a commutative ring and let \({n >1}\) be an integer. We introduce a simple graph, denoted by \({\Gamma_t(M_n(R))}\), which we call the trace graph of the matrix ring \({M_n(R)}\), such that its vertex set is \({M_n(R)^{\ast}}\) and such that two distinct vertices A and B are joined by an edge if and only if \({{\rm Tr} (AB)=0}\) where \({ {\rm Tr} (AB)}\) denotes the trace of the matrix AB. We prove that \({\Gamma_t(M_n(R))}\) is connected with \({{\rm diam}(\Gamma_{t}(M_{n}(R)))=2}\) and \({{\rm gr} (\Gamma_t(M_n(R)))=3}\). We investigate also the interplay between the ring-theoretic properties of R and the graph-theoretic properties of \({\Gamma_t(M_n(R))}\). Hence, we use the notion of the irregularity index of a graph to characterize rings with exactly one nontrivial ideal.  相似文献   

13.
Let C be a unital AH-algebra and A be a unital simple C*-algebras with tracial rank zero. It has been shown that two unital monomorphisms \({\phi, \psi: C\to A}\) are approximately unitarily equivalent if and only if
$ [\phi]=[\psi]\quad {\rm in}\quad KL(C,A)\quad {\rm and}\quad \tau\circ \phi=\tau\circ \psi \quad{\rm for\, all}\tau\in T(A),$
where T(A) is the tracial state space of A. In this paper we prove the following: Given \({\kappa\in KL(C,A)}\) with \({\kappa(K_0(C)_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) and with κ([1 C ]) = [1 A ] and a continuous affine map \({\lambda: T(A)\to T_{\mathfrak f}(C)}\) which is compatible with κ, where \({T_{\mathfrak f}(C)}\) is the convex set of all faithful tracial states, there exists a unital monomorphism \({\phi: C\to A}\) such that
$[\phi]=\kappa\quad{\rm and}\quad \tau\circ \phi(c)=\lambda(\tau)(c)$
for all \({c\in C_{s.a.}}\) and \({\tau\in T(A).}\) Denote by \({{\rm Mon}_{au}^e(C,A)}\) the set of approximate unitary equivalence classes of unital monomorphisms. We provide a bijective map
$\Lambda: {\rm Mon}_{au}^e (C,A)\to KLT(C,A)^{++},$
where KLT(C, A)++ is the set of compatible pairs of elements in KL(C, A)++ and continuous affine maps from T(A) to \({T_{\mathfrak f}(C).}\) Moreover, we found that there are compact metric spaces X, unital simple AF-algebras A and \({\kappa\in KL(C(X), A)}\) with \({\kappa(K_0(C(X))_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) for which there is no homomorphism h: C(X) → A so that [h] = κ.
  相似文献   

14.
Let \(n \ge r \ge s \ge 0\) be integers and \(\mathcal {F}\) a family of r-subsets of [n]. Let \(W_{r,s}^{\mathcal {F}}\) be the higher inclusion matrix of the subsets in \({{\mathcal {F}}}\) vs. the s-subsets of [n]. When \(\mathcal {F}\) consists of all r-subsets of [n], we shall simply write \(W_{r,s}\) in place of \(W_{r,s}^{\mathcal {F}}\). In this paper we prove that the rank of the higher inclusion matrix \(W_{r,s}\) over an arbitrary field K is resilient. That is, if the size of \(\mathcal {F}\) is “close” to \({n \atopwithdelims ()r}\) then \({{\mathrm{rank}}}_{K}( W_{r,s}^{\mathcal {F}}) = {{\mathrm{rank}}}_{K}(W_{r,s})\), where K is an arbitrary field. Furthermore, we prove that the rank (over a field K) of the higher inclusion matrix of r-subspaces vs. s-subspaces of an n-dimensional vector space over \({\mathbb {F}}_q\) is also resilient if \(\mathrm{char}(K)\) is coprime to q.  相似文献   

15.
For bounded lattices L1 and L2, let \({f\colon L_1 \to L_2}\) be a lattice homomorphism. Then the map \({{\rm Princ}(f)\colon \rm {Princ}(\it L_1) \to {\rm Princ}(\it L_2)}\), defined by \({{\rm con}(x,y) \mapsto {\rm con}(f(x),f(y))}\), is a 0-preserving isotone map from the bounded ordered set Princ(L1) of principal congruences of L1 to that of L2. We prove that every 0-preserving isotone map between two bounded ordered sets can be represented in this way. Our result generalizes a 2016 result of G. Grätzer from \({\{0,1}\}\)-preserving isotone maps to 0-preserving isotone maps.  相似文献   

16.
In this paper, we study the asymptotic behavior of viscosity solutions to boundary blow-up elliptic problem \({\Delta_{\infty}u=b(x)f(u),\, x\in\Omega,\,u|_{\partial\Omega}=+\infty,}\) where \({\Omega}\) is a bounded domain with C2-boundary in \({\mathbb{R}^{N}}\), \({b\in \rm C(\bar{\Omega})}\) is positive in \({\Omega}\), which may be vanishing on the boundary, \({f\in C^{1}([0, \infty))}\) is regularly varying or is rapidly varying at infinity.  相似文献   

17.
Let \(\tau({\mathcal{H}})\) be the cover number and \(\nu({\mathcal{H}})\) be the matching number of a hypergraph \({\mathcal{H}}\). Ryser conjectured that every r-partite hypergraph \({\mathcal{H}}\) satisfies the inequality \(\tau({\mathcal{H}}) \leq (r-1) \nu ({\mathcal{H}})\). This conjecture is open for all r ≥ 4. For intersecting hypergraphs, namely those with \(\nu({\mathcal{H}}) = 1\), Ryser’s conjecture reduces to \(\tau({\mathcal{H}}) \leq r-1\). Even this conjecture is extremely difficult and is open for all r ≥ 6. For infinitely many r there are examples of intersecting r-partite hypergraphs with \(\tau({\mathcal{H}}) = r-1\), demonstrating the tightness of the conjecture for such r. However, all previously known constructions are not optimal as they use far too many edges. How sparse can an intersecting r-partite hypergraph be, given that its cover number is as large as possible, namely \(\tau({\mathcal{H}}) \ge r-1\)? In this paper we solve this question for r ≤ 5, give an almost optimal construction for r = 6, prove that any r-partite intersecting hypergraph with τ(H) ≥ r ? 1 must have at least \((3-\frac{1}{\sqrt{18}})r(1-o(1)) \approx 2.764r(1-o(1))\) edges, and conjecture that there exist constructions with Θ(r) edges.  相似文献   

18.
Let \({\mu \geq \omega}\) be regular, assume the Generalized Continuum Hypothesis and the principle \({\square_\lambda}\) holds for every singular \({\lambda}\) with \({{\rm cf}(\lambda) \leq \mu}\). Let X be a graph with chromatic number greater than \({\mu^+}\). Then X contains a \({\mu}\)-connected subgraph Y of X whose chromatic number is greater than \({\mu^+}\).  相似文献   

19.
For \({\Omega\subseteq \mathbb{C}}\) a connected open set, and \({{\mathcal U}}\) a unital Banach algebra (or a unital C*-algebra), let \({{\xi (U)}}\) and \({ P({\mathcal U})}\) denote the sets of all idempotents and projections in \({{\mathcal U}}\), respectively. If \({e:\Omega\rightarrow \xi ({\mathcal U})}\) (resp.\({P({\mathcal U}))}\) is a holomorphic \({{\mathcal U}}\)-valued map, then e is called an extended holomorphic curve on \({ \xi ({\mathcal U})}\) (resp. \({P({\mathcal U})}\)). In this article, we focus on discussing the similarity classification problem of extended holomorphic curves. First, we introduce the definition of the commutant of extended holomorphic curves. By using K 0-group of the commutant of the extended holomorphic curve, we characterize the curve which has unique finite (SI) decomposition up to similarity. Subsequently, we also obtain a similarity classification theorem. Second, we also discuss the unitary equivalence problem of some curves with respect to inductive limit C*-algebras.  相似文献   

20.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号