首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reaction of benzotriazole with 2,6-bis(bromomethyl)pyridine and 2,6-pyridinedicarbonyl dichloride yields the tridentate ligands 2,6-bis(benzotriazol-1-ylmethyl)pyridine (1) and 2,6-bis(benzotriazol-1-ylcarbonyl) pyridine (2). The molecular structures of the ligands were determined by single-crystal X-ray diffraction. These ligands react with CrCl3(THF)3 in THF to form neutral complexes, [CrCl3{2,6-bis(benzotriazolyl)pyridine-N,N,N}] (3, 4), which are isolated in high yields as air stable green solids and characterized by mass spectra (ESI), FTIR spectroscopy, UV–Visible, thermogravimetric analysis (TGA), and magnetic measurements. After reaction with methylaluminoxane (MAO), the chromium(III) complexes are active in the polymerization of ethylene showing a bimodal molecular weight distribution. A DFT computational investigation of the polymerization reaction mechanism shows that the most likely reaction pathway originates from the mer configuration when the spacer is CH2 (complex 3) and from the fac configuration when the spacer is CO (complex 4).  相似文献   

2.
Two new ligands 1-(2-methoxyphenyl)-3,4-diphenylcyclopentadiene (1) and 1-(2-methoxyphenyl)-2,3,4,5-tetramethylcyclopentadiene (2), as well as their corresponding cyclopentadienylchromium complexes η5-1-(2-methoxyphenyl)-3,4-diphenylcyclopentadienyl chromium dichloride (3) and η5-1-(2-methoxyphenyl)-2,3,4,5-tetramethylcyclopentadienyl chromium dichloride (4) were synthesized and characterized. Molecular structures of 3 and 4 were determined by single-crystal X-ray diffraction. Complexes 3 and 4 were tested as catalyst precursors for ethylene polymerization. When activated with Al(iBu)3 and , complex 3 shows reasonable catalytic activity while 4 exhibits high catalytic activity for ethylene polymerization. The effects of temperature and Al/Cr ratio on the catalytic activity were studied. The molecular weight and melting temperature of the produced polyethylenes were determined.  相似文献   

3.
Lithium derivatives of substituted cyclopentadiene ligands reacted with CrCl3(THF)3 in THF solution to afford homodinuclear complexes of the type [{(η5-RCp)CrCl(μ-Cl) }2] [R=SiMe3 (1), CH2C(Me)CH2 (2)]. Complex 1 reacts with pyrazole (C3H4N2) to yield the mononuclear half-sandwich complex [(η5-Me3SiCp)CrCl2(pyrazole)] (3). The similar complex [Cp*CrCl2(pyrazole)] (4) was synthesised by reaction of [{Cp*CrCl(μ-Cl)}2] with pyrazole. Complex 2 reacts with bidentate ligands to give binuclear complexes of the type [{(η5-CH2C(Me)CH2Cp)CrCl2 }2(μ-L-L)] [L-L=Ph2PCH2CH2PPh2 (5), trans-Ph2P(O)CHCHP(O)Ph2 (6)]. All complexes were structurally characterised by X-ray diffraction. After reaction with methylaluminoxane these complexes are active in the polymerization of ethylene. At 25 °C and 4 bar of ethylene, complex 3 yields polyethylene with a bimodal molecular weight distribution centred at 155,000 and 2000 g/mol. Complex 4 shows similar activity, yielding only the low molecular weight fraction. On the other hand, the binuclear complexes 5 and 6 under the same conditions were three times more active than mononuclear complexes. The melting point of the polymers indicates the formation of linear polyethylene.  相似文献   

4.
A series of chromium(III) complexes bearing 2-benzoxazolyl-6-aryliminopyridines was synthesized and characterized by IR spectroscopic and CHN analysis. The X-ray crystallographic analysis of complex Cr3 revealed a distorted octahedral geometry. When activated by Et2AlCl, MAO or MMAO, these chromium complexes exhibited activities towards ethylene reactivity. High activities of ethylene oligomerization (up to 9.19 × 106 g mol−1 (Cr) h−1) were observed in the catalytic system using MMAO as a cocatalyst, meanwhile good activities of ethylene polymerization were achieved (up to 5.20 × 105 g mol−1 (Cr) h−1) by using MAO as a cocatalyst. Various reaction parameters were investigated in detail, and the steric and electronic effects of ligands were discussed.  相似文献   

5.
The reaction of [Na2PdCl4] with 3,5-bis(2-pyridoxy)toluene (LpyH) in acetic acid yields the cyclometalated complex [PdCl(Lpy-N, C, N)] (1). Complex 1 can be further converted into neutral species by metathesis reaction exchange of chloride by either iodide or thiocyanate to yield [PdX(Lpy-N, C, N)] (X = I (2), SCN (3)). The chloride can be replaced by neutral ligands like pyridine or acetonitrile in the presence of silver tetrafluoroborate to give the corresponding cationic compounds [PdL(Lpy-N, C, N)]BF4 (L = Py (4), MeCN (5)). In contrast, the reaction of [Na2PdCl4] with 3,5-bis(3, 5-dimethylpyrazol-1-ylmethyl)toluene (LpzH) under analogous conditions yields the neutral complex [PdCl2(LpzH-N, N)](6) with the ligand bidentate N,N-donor. The cyclometalated palladium complex [PdCl(Lpz-N, C, N)] (7) was prepared by the reaction of Pd(OAc)2 with LpzH in acetic acid followed by a metathetic reaction with lithium chloride in acetone/water. Complexes 1, 6, and 7 in the presence of methylaluminoxane (MAO) lead to an active catalyst for the polymerization of ethylene.  相似文献   

6.
A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)]2TiCl2 (7, R = CH3; 8, R = CHMe2) and [PhP(2-Me2CHO-C6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-Bu3Al/Ph3CB(C6F5)4, and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.  相似文献   

7.
Three monochlorotitanium complexes Cp′Ti(2,4-tBu2-6-(CPh2O)C6H2O)Cl [Cp′ = η5-C5H5 (2), η5-C5(CH3)5 (3), η5-C5H2Ph2CH3 (4)] have been synthesized in high yields (>90%) by the reaction of corresponding Cp′TiCl3 with the dilithium salt of ligand 2,4-tBu2-6-(CPh2OH)C6H2OH (1). When activated by [Ph3C]+[B(C6F5)4] and AliBu3, complexes 24 exhibit reasonable catalytic activity for ethylene polymerization, producing polyethylenes with moderate molecular weights and melting points. Addition of excess water to complex 2 gave the oxo-bridged complex [Ti(η5-C5H5)(2,4-tBu2-6-(CPh2O)C6H2O)]2O (5). Complexes 4 and 5 were characterized by single crystal X-ray diffraction.  相似文献   

8.
A series of unsymmetrical mono(imine)pyrroles (L1–L3) were synthesized by microwave irradiation from 2-acetylpyrrole and a series of dimethylanilines with two methyl groups at different positions on the aniline ring. A simplified synthetic method was initiated to prepare the corresponding nickel complexes NiL2 (1–3) with direct condensation of mono(imine)pyrrole and nickel chloride. The compounds were determined using a suite of techniques (i.e. 1H NMR, 13C NMR, IR, EA, MS). L1–L3 and 3 were further characterized by X-ray crystal diffraction. The structure of 3 showed that the ligand chelated to nickel with 2?:?1 M ratio, in spite of a 1?:?1 rate of charge. Application of 1–3 in ethylene polymerization indicated that mono(imino)pyrrole nickel complexes showed low activities. The polymerization reaction time and temperature, as well as the ligand structure, influenced the catalytic performance to some extent. Experimental data showed higher activity as –CH3 on the aniline ring is closer to the imine group.  相似文献   

9.
The synthesis of N-(1-(3,5-dimethylpyrazol-1-yl)ethylidene)-2,6-diisopropylaniline (1) and N-(1-(indazol-2-yl)ethylidene)-2,6-diisopropylaniline (2) allowed access to new transition metal complexes. When reacted with dibromo(2,2′-dimethoxyethylether)nickel(II) the complexes [NiBr2{N-(1-(3,5-dimethylpyrazol-1-yl)ethylidene)-2,6-diisopropylaniline}] (3) and [Ni2Br2(μ-Br)2{N-(1-(indazol-1-yl)ethylidene)-2,6-diisopropylaniline}2] (4) are yielded, respectively. The addition of MAO generates catalytically active species for the homopolymerization of ethylene. The polymer products were low molecular weight (3-6 K) and a monomodal molecular weight distribution, consistent with the presence of a single active site. In addition, the catalyst was found to efficiently oligomerize higher olefins to high molecular weights with narrow PDIs.  相似文献   

10.
A series of potentially bidentate benzimidazolyl ligands of the type (Bim)CH2D (where Bim = benzimidazolyl and D = NMe2L1, NEt2L2, NPri2L3, OMe L4 and SMe L5) has been reacted with Ti(NMe2)4 to give five- and six-coordinate Ti(IV) complexes of the type [(Bim)CH2D]Ti(NMe2)3 and [(Bim)CH2D]2Ti(NMe2)2, respectively. The X-ray structures of [(Bim)CH2OMe]Ti(NMe2)3, [(Bim)CH2NMe2]2Ti(NMe2)2 and [(Bim)CH2OMe)]2Ti(NMe2)2 are reported along with an evaluation of their behavior in ethylene polymerization.  相似文献   

11.
A series of new iron(II) complexes bearing tridentate pyrazine-bis(2,6-arylimino) ligands where the aryl groups are 1-naphthyl, 2,6-dimethylphenyl, and 2,6-diisopropylphenyl have been used as ethylene polymerization catalysts after activation with alkylaluminiums. The new complexes display a lesser catalytic activity than those bearing the corresponding pyridine-bis(2,6-arylimino) ligands. Varying the steric bulkiness of the aromatic groups in the tridentate ligands and the polymerization conditions affects the catalytic productivity.  相似文献   

12.
(Phosphinoamide)(cyclopentadienyl)titanium(IV) complexes of the type Cp*TiCl22-Ph2PNR) [Cp*=C5Me5; R = t-Bu (2a), R = n-Bu (2b), R = Ph (2c)] have been prepared by the reaction of Cp*TiCl3 with the corresponding lithium phosphinoamides. The structure of Cp*TiCl22-Ph2PNtBu) (2a) and Cp*TiCl22-Ph2PNPh) (2c) have been determined by X-ray crystallography. These complexes exhibited moderate catalytic activities for ethylene polymerization in the presence of modified methylaluminoxane (MMAO). Catalytic activity of up to 2.5 × 106 g/(mol Ti h) was observed when activated by i-Bu3Al/Ph3CB(C6F5)4.  相似文献   

13.
The synthesis, characterization and catalytic activity in ethylene polymerization of novel mononuclear vanadium complexes bearing NNN-tridentate (pyrazolyl-pyridine) ligands are described. With AlEtCl2 as co-catalyst, complexes 1 and 2 produce single-site catalysts that polymerized ethylene affording high density polyethylene with fairly narrow molecular weight distribution.  相似文献   

14.
Mixed ketoiminate/ketoimine/pentamethylcyclopentadienyl (Cp*) complex of zirconium, [(η5-Cp*){CH3C(O)CHC(NHR)CH3}{CH3C(O)CHC(NR)CH3}ZrCl2] (R=4-CF3Ph) (3) has been prepared in high yield by the reaction of one equivalent of 4-CF3-phenyl-β-ketoimine (1a) and one equivalent of lithium 4-CF3-phenyl-β-ketoiminate (2a) with one equivalent of Cp*ZrCl3 in Et2O. Bis(ketoiminate)zirconium dichloride complexes, 4 and 6, have been also prepared in high yield by the reaction of amine elimination of ketoimine ligands, respectively 1a and 1b, with Zr(NMe2)4 and followed by chlorination reaction with TMSCl. The X-ray crystallography reveals that the compound 3 is based on distorted octahedral geometry containing a ketoimine and a ketoiminate. The ketoiminate ligand coordinates to the zirconium as a bidentate ligand, leaving the metal center coordinatively unsaturated and thus leading to an additional binding of a ketoimine ligand to the metal to stabilize the complex 3. The zirconium complexes 3, 4 and 6 provide the moderate activity for the polymerization of ethylene in the presence of MMAO cocatalyst. Low molecular weight and high density polyethylene was obtained.  相似文献   

15.
The study of the reactivity of R---CH=N---(C6H4-2-SMe) with R=C6H5 or 2,4,6-Me3-C6H2 with palladium(II) salts is reported. These studies have allowed us to prepare and characterize the coordination complexes: cis-[Pd{R---CH=N---(C6H4-2-SMe)}Cl2] {R=C6H5 or 2,4,6-Me3-C6H2} and the cyclopalladated compounds [Pd{C6H4---CH=N---(C6H4-2-SMe)}Cl] and [Pd{(2-CH2-4,6-Me2-C6H2)---CH=N---(C6H4-2-SMe)}Cl]. The X-ray crystal structures of the latter complexes reveal that the thioimines act as a [Csp2, phenyl,N,S] and as a [Csp3, N,S] terdentate group, respectively. The study of the reactions of the cyclopalladated compounds with PPh3 is also reported.  相似文献   

16.
Six titanium complexes bearing pyrazolonato and pyrazolonato-ketimine ligands have been synthesized and characterized. It was found that the ligand structure of the synthesized complexes has a significant effect on the catalytic performance of the complexes. The synthesized complexes were activated with MAO and their activities varied from negligible to high (up to 612 kgPE/(molTi h bar). The pyrazolonato-ketimine complex with a phenyl substituent in the imine part was the most active in the series and it was the only one producing polyethylenes with relatively narrow molecular weight distribution (Mw/Mn from 1.6 to 2.2).  相似文献   

17.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

18.
Reaction of complex CrCl3(THF)3 with the tris(pyrazolyl)methane ligands, HC(Pz)3, HC(3,5-Me2Pz)3 and their substituted derivatives RC(Pz)3 (R = Me, CH2OH, CH2OSO2Me) in THF lead to the formation of neutral complexes of the types [RC(Pz)3CrCl3] and [RC(3,5-Me2Pz)3CrCl3]. After reaction with methylalumoxane (MAO) these complexes are active in the polymerization of ethylene. The substituent on the methane central carbon atom of the ligand has some influence in polymerization behavior. This compounds present higher activities than similar chromium complexes, in the ethylene polymerization reaction.  相似文献   

19.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

20.
A series of new cobalt and nickel complexes LMX2 (M=Co, X=Cl; M=Ni, X=Br) bearing 2, 6-bis(imino)phenoxy ligands were synthesized. The solid-state structures of 1 and 4 have been determined by single-crystal X-ray diffraction study. Treatment of the complexes LMX2 with methylaluminoxane (MAO) leads to active catalysts for oligomerization of ethylene with catalytic activities in the range of 1.2×105–2.1×105 g mol−1 h−1 atm−1 for Ni complexes, and 103 g mol−1 h−1 atm−1 for Co complexes. The oligomers were olefins from C4 to C16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号