首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given facilities with capacities and clients with penalties and demands, the transportation problem with market choice consists in finding the minimum-cost way to partition the clients into unserved clients, paying the penalties, and into served clients, paying the transportation cost to serve them.  相似文献   

2.
Scheduling algorithms and their role in supply chain planning are topics that have been discussed in scheduling literature for many years. Based on examples and experience with commercial supply chain planning software, this paper presents background information about production planning and scheduling functionality in commercial supply chain planning software and interesting scheduling coordination problems in supply chain planning for researchers. We first provide an overview of different planning activities in supply chain planning, while taking into consideration existing functionalities that are available in commercial supply chain planning software. As a second step, we show three scheduling coordination problems in supply chain planning, namely the integration of production planning and production scheduling, the integration of sales order confirmation and production scheduling and the integration of VMI planning and production scheduling. We conclude this paper with a detailed discussion of an implementation of a supply chain planning solution at the tissue producer SCA Hygiene in Sweden. This paper expresses the authors opinion and does not represent an official statement from SAP.  相似文献   

3.
In this paper, we present new approximation results for the offline problem of single machine scheduling with sequence-independent set-ups and item availability, where the jobs to be scheduled are independent (i.e., have no precedence constraints) and have a common release time.We present polynomial-time approximation algorithms for two versions of this problem. In the first version, the input includes a weight for each job, and the goal is to minimize the total weighted completion time. On any input, our algorithm produces a schedule whose total weighted completion time is within a factor 2 of optimal for that input.In the second version, the input includes a due date for each job, and the goal is to minimize the maximum lateness of any job. On any input, our algorithm produces a schedule with the following performance guarantee: the maximum lateness of a job is at most the maximum lateness of the optimal schedule on a machine that runs at half the speed of our machine.  相似文献   

4.
Several versions of the graph approximation problem are under study. Approximation algorithms for these problems are proposed, and performance guarantees of the algorithms are obtained. In particular, it is shown that the problem of approximation by graphs with a bounded number of connected components belongs to the class APX.  相似文献   

5.
Approximation algorithms for Hamming clustering problems   总被引:1,自引:0,他引:1  
We study Hamming versions of two classical clustering problems. The Hamming radius p-clustering problem (HRC) for a set S of k binary strings, each of length n, is to find p binary strings of length n that minimize the maximum Hamming distance between a string in S and the closest of the p strings; this minimum value is termed the p-radius of S and is denoted by . The related Hamming diameter p-clustering problem (HDC) is to split S into p groups so that the maximum of the Hamming group diameters is minimized; this latter value is called the p-diameter of S.We provide an integer programming formulation of HRC which yields exact solutions in polynomial time whenever k is constant. We also observe that HDC admits straightforward polynomial-time solutions when k=O(logn) and p=O(1), or when p=2. Next, by reduction from the corresponding geometric p-clustering problems in the plane under the L1 metric, we show that neither HRC nor HDC can be approximated within any constant factor smaller than two unless P=NP. We also prove that for any >0 it is NP-hard to split S into at most pk1/7− clusters whose Hamming diameter does not exceed the p-diameter, and that solving HDC exactly is an NP-complete problem already for p=3. Furthermore, we note that by adapting Gonzalez' farthest-point clustering algorithm [T. Gonzalez, Theoret. Comput. Sci. 38 (1985) 293–306], HRC and HDC can be approximated within a factor of two in time O(pkn). Next, we describe a 2O(p/)kO(p/)n2-time (1+)-approximation algorithm for HRC. In particular, it runs in polynomial time when p=O(1) and =O(log(k+n)). Finally, we show how to find in

time a set L of O(plogk) strings of length n such that for each string in S there is at least one string in L within distance (1+), for any constant 0<<1.  相似文献   

6.
The $k$ -partitioning problem with partition matroid constraint is to partition the union of $k$ given sets of size $m$ into $m$ sets such that each set contains exactly one element from each given set. With the objective of minimizing the maximum load, we present an efficient polynomial time approximation scheme (EPTAS) for the case where $k$ is a constant and a full polynomial time approximation scheme (FPTAS) for the case where $m$ is a constant; with the objective of maximizing the minimum load, we present a $\frac{1}{k-1}$ -approximation algorithm for the general case, an EPTAS for the case where $k$ is a constant; with the objective of minimizing the $l_p$ -norm of the load vector, we prove that the layered LPT algorithm (Wu and Yao in Theor Comput Sci 374:41–48, 2007) is an all-norm 2-approximation algorithm.  相似文献   

7.
In this paper we consider coupled-task single-machine and two-machine flow shop scheduling problems with exact delays, unit processing times, and the makespan as an objective function. The main results of the paper are fast 7/4- and 3/2-approximation algorithms for solving the single- and two-machine problems, respectively.  相似文献   

8.
9.
In this paper we develop approximation algorithms for generalizations of the following three known combinatorial optimization problems, the Prize-Collecting Steiner Tree problem, the Prize-Collecting Travelling Salesman Problem and a Location-Routing problem.Given a graph G=(V,E) on n vertices and a length function on its edges, in the grouped versions of the above mentioned problems we assume that V is partitioned into k+1 groups, {V0,V1,…,Vk}, with a penalty function on the groups. In the Group Prize-Collecting Steiner Tree problem the aim is to find S, a collection of groups of V and a tree spanning the rest of the groups not in S, so as to minimize the sum of the costs of the edges in the tree and the costs of the groups in S. The Group Prize-Collecting Travelling Salesman Problem, is defined analogously. In the Group Location-Routing problem the customer vertices are partitioned into groups and one has to select simultaneously a subset of depots to be opened and a collection of tours that covers the customer groups. The goal is to minimize the costs of the tours plus the fixed costs of the opened depots. We give a -approximation algorithm for each of the three problems, where I is the cardinality of the largest group.  相似文献   

10.
We are concerned with a combinatorial optimization problem which has the ratio of two linear functions as the objective function. This type of problems can be solved by an algorithm that uses an auxiliary problem with a parametrized linear objective function. Because of its combinatorial nature, however, it is often difficult to solve the auxiliary problem exactly. In this paper, we propose an algorithm which assumes that the auxiliary problems are solved only approximately, and prove that it gives an approximate solution to the original problem, of which the accuracy is at least as good as that of approximate solutions to the auxiliary problems. It is also shown that the time complexity is bounded by the square of the computation time of the approximate algorithm for the auxiliary problem. As an example of the proposed algorithm, we present a fully polynomial time approximation scheme for the fractional 0–1 knapsack problem.  相似文献   

11.
12.
13.
In this paper, we present approximation algorithms for minimum vertex and edge guard problems for polygons with or without holes with a total of n vertices. For simple polygons, approximation algorithms for both problems run in O(n4) time and yield solutions that can be at most O(logn) times the optimal solution. For polygons with holes, approximation algorithms for both problems give the same approximation ratio of O(logn), but the running time of the algorithms increases by a factor of n to O(n5).  相似文献   

14.
In this paper,we consider the following indefinite complex quadratic maximization problem: maximize zHQz,subject to zk ∈ C and zkm = 1,k = 1,...,n,where Q is a Hermitian matrix with trQ = 0,z ∈ Cn is the decision vector,and m 3.An (1/log n) approximation algorithm is presented for such problem.Furthermore,we consider the above problem where the objective matrix Q is in bilinear form,in which case a 0.7118 cos mπ 2approximation algorithm can be constructed.In the context of quadratic optimization,various extensions and connections of the model are discussed.  相似文献   

15.
Production planning problems with setup decisions, which were formulated as mixed integer programmes (MIP), are solved in this study. The integer component of the MIP solution is determined by three evolution algorithms used in this study. Firstly, a traditional genetic algorithm (GA) uses conventional crossover and mutation operators for generating new chromosomes (solutions). Secondly, a modified GA uses not only the conventional operators but also a sibling operator, which stochastically produces new chromosomes from old ones using the sensitivity information of an associated linear programme. Thirdly, a sibling evolution algorithm uses only the sibling operator to reproduce. Based on the experiments done in this study, the sibling evolution algorithm performs the best among all the algorithms used in this study.  相似文献   

16.
This work deals with the continuous time lot-sizing inventory problem when demand and costs are time-dependent. We adapt a cost balancing technique developed for the periodic-review version of our problem to the continuous-review framework. We prove that the solution obtained costs at most twice the cost of an optimal solution. We study the numerical complexity of the algorithm and generalize the policy to several important extensions while preserving its performance guarantee of two. Finally, we propose a modified version of our algorithm for the lot-sizing model with some restricted settings that improves the worst-case bound.  相似文献   

17.
18.
This paper presents an agent-based simulation framework for supply chain (SC) planning, introducing the notion of normative agent. The analysis of the relevant literature shows that most research works carried out in this area aim to handle specific problems and contexts. Although some methodologies and more generic solutions have been proposed, they are not able to cope with SCs in which regulation plays an important role, whether issued by a government agent or by an international institution. Several SCs, such as in the energy, food, chemical, and forestry areas, are highly regulated. Explicitly modelling the actors involved in the regulation of SCs using normative agents allowed us to evaluate the potential benefits of alternative strategies for planning of regulated SCs. The modelling of a biodiesel SC is presented as a case study.  相似文献   

19.
20.
This article presents a new 2-approximation algorithm for a multiple depot, multiple terminal, Hamiltonian path problem when the costs satisfy the triangle inequality. For the case where all the salesmen start from the same depot, we present another algorithm with an approximation ratio of \frac53{\frac{5}{3}}. These results generalize the approximation algorithms currently available for the single depot, single terminal Hamiltonian path problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号