首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self assembly of N-salicylidene 2-aminopyridine (L1H) with Cu(NO3)2·3H2O affords [Cu4(L1)4(NO3)3(CH3OH)][Cu(L1)(NO3)2](2-aminopyridinium)(NO3)·5CH3OH (1) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling (J = −340(2) cm−1) between Cu(II) ions through a double alkoxo bridge. Reacting L1H with Cu(NO3)2·3H2O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu4(L1)4(NO3)2(OH)2](2-aminopyridinium)(OH)·CH3OH) (2). A dinuclear Ni(II) complex, [Ni2(L2)2(L2H)2(NCS)2(CH3OH)2]·2CH3OH (3), obtained with another related donor ligand (L2H N-salicylidene 3-aminomethylpyridine) was also prepared.  相似文献   

2.
Five new Cu(II) complexes [Cu(psa)(phen)] · 3H2O (1), [Cu(psa)(2bpy)] · 0.5H2O (2), [Cu(psa)(2bpy)(H2O)] · 3H2O (3), [Cu(psa)(4bpy)] · H2O (4), and [Cu(psa)0.5(N3)(2bpy)] (5) (H2psa = phenylsuccinic acid, phen = 1,10-phenanthroline, 2bpy = 2,2′-bipyridine, and 4bpy = 4,4′-bipyridine) were obtained under solvothermal conditions and characterized by single-crystal X-ray diffraction. Complexes 2 and 3 were formed by one-pot reaction. In complex 2, Cu(II) ion is four-coordinated and locates at a slightly distorted square center. In complex 3, the coordinated water molecule occupies the axial site of Cu(II) ion forming a tetragonal pyramid geometry. Complexes 1 and 3 are of 1D chain structures, and extended into 2D supramolecular network by hydrogen bonds. Complex 2 is of zipper structure, and further assembled into 2D supramolecular network by hydrogen bonds and π–π stacking interactions. Complex 4 is a 3D CdSO4-like structure with twofold interpenetration, while complex 5 is a dinuclear compound. The different structures of complexes 15 can be attributed to using the auxiliary ligands, indicating an important role of the auxiliary ligands in assembly and structure of the title complexes.  相似文献   

3.
The synthesis and structural chemistry of four new divalent transition metal complexes of the fluorene ligands 4,5-diazaspirobifluorene (L1) and bis-9-biphenyl-4,5-diazafluorenyl peroxide (L2), [Cu3(L1)4(NO3)6(H2O)2] · 2CH3CN (1), [Cu(L1)(CH3CO2)2(H2O)] · 2H2O (2), [Cd(L1)2(NO3)2] · DMF (3) (DMF = N,N-dimethylformamide) and [Zn2(L2)(μ-Cl)2Cl2] (4) are described. Single-crystal X-ray diffraction analysis reveal that the four complexes exhibit various frameworks due to diverse coordination modes and different conformations of ligands L1 or L2, as well as nitrate, acetate or chloro counterions. L1 in complexes 1, 2 and 3 present an asymmetric rigid bidentate ligand with two nitrogen atoms as the donor sites. Novel complex 4 was formed through complexation between conformationally bent shaped peroxide ligands and zinc(II) dichlorides that adopt a linear coordination geometry, which can also give rise to extended polymeric chains with a zigzag secondary structure.  相似文献   

4.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

5.
Four new solvent-induced Cu(II) complexes with the chemical formulae [{Cu(HL)(CH3OH)}2Cu] · CH3OH (1), [{(Cu(HL))2(CH3CH2OH)2}Cu] (2), [{CuL(H2O)}2Cu2] · 2CH3CH2CH2OH (3) and [{(Cu(HL))2(CH3CH2CH2CH2OH)2}Cu] (4), where H4L = 6,6′-dihydroxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol, have been synthesized and characterized by elemental analyses, 1H NMR, FT-IR, UV–Vis spectra, TG-DTA, molar conductances and X-ray crystallography. Complexes 1, 2 and 4 have an elongated square-pyramidal geometry with an unusually long bond from the penta-coordinated Cu(II) centres to the oxygen atoms of the apically coordinated solvent (methanol, ethanol or n-butanol) molecules for the terminal Cu(II) ions, and a square planar geometry distorted tetrahedrally for the central Cu(II) ion. In complex 3, the terminal Cu(II) ions have trigonal bipyramidal coordination geometries constituted by equatorial O2N donor sites, with one oxygen atom from one of the coordinated water molecules and one nitrogen atom from a completely deprotonated L4− ligand unit in the axial positions, and the central Cu(II) ions are in slightly tetrahedrally distorted square planar geometries constituted by four phenoxo oxygen donors from two completely deprotonated L4− ligand units, and these form a tetrametal Cu–O–Cu–O–Cu–O–Cu–O eight-membered ring. These four complexes exhibit strong hydrogen bonding interactions in the solid state. Moreover, co-crystallizing n-propanol molecules link two other adjacent complex molecules into a self-assembled infinite 2D supramolecular structure via the intermolecular hydrogen bonds in complex 3.  相似文献   

6.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

7.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

8.
A versatile neutral metalloligand [Cu(PySal)2] (1) (PySal = 3-pyridylmethylsalicylidene-imino) was exploited as a building unit to construct five complexes {Cu[Cu(PySal)2]2}(ClO4)2 (2), {Cd[Cu(PySal)2]2(H2O)2]} (NO3)2 · 2H2O · 4CH3OH (3), {Zn[μ2-Cu(PySal)2]Cl2}n · nCH3OH (4), {Hg[μ2-Cu(PySal)2]I2}n (5) and {Cd[μ2-Cu(PySal)2]Cl2}n · nCH2Cl2 (6). [Cu(PySal)2] acts as a chelating ligand in discrete complexes 2 and 3 with unbound anions, but as a bis-monodentate bridging ligand in polymers 4, 5 and 6 when halogen anions coordinated cooperatively to metal cations. The coordination geometry of Cu2+ is well-defined square planar in bridging [Cu(PySal)2], analogous to that in free metalloligand (1), but it is distorted square planar in chelating [Cu(PySal)2].  相似文献   

9.
A new semicarbazone (HL) based on di-2-pyridyl ketone and its three cadmium(II) complexes [CdL(CH3COO)]2 · 2CH3OH (1), Cd(HL)Br2 (2) and [Cd2L2N3]2 · H2O (3) were synthesized and characterized by different physicochemical techniques. The complex, [CdL(CH3COO)]2 · 2CH3OH (1) is having a dimeric structure. In complexes 1 and 3, the ligand moieties are coordinated as monoanionic (L) forms and in complex 2, the ligand is coordinated as neutral (HL) one. The coordination geometry around cadmium(II) in 1 is distorted octahedral, as obtained by X-ray diffraction studies.  相似文献   

10.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

11.
Three new dinuclear Zn(II) complexes [Zn(L)(μ1,1-N3)Zn(L)(N3)] · 1.5H2O (1), [Zn(L)(μ1,1-NCO)Zn(L)(NCO)] · 1.5H2O (2) and [Zn(L)(μ1,1-NCS)Zn(L)(NCS)(OH2)] (3) have been synthesized from a potentially tetradentate N2O2-donor Schiff base ligand LH, [LH = (OCH3)(OH)C6H3CHN(CH2)2N(CH3)2], which is the condensation product of o-vanillin and 2-dimethylaminoethylamine. All the three complexes 1, 2 and 3 have been characterized by elemental analysis, IR and 1H NMR spectroscopy, TGA and fluorescence studies. Finally, their structures have been established by the single crystal X-ray diffraction method. Structural studies reveal that in complexes 1, 2 and 3 the two Zn(II) centers are held together by a μ2-phenolato oxygen atom and also by an end-on pseudohalide nitrogen (azide for 1; cyanate for 2; thiocyanate for 3) atom. Among the two deprotonated Schiff base ligands present in each complex, one acts as a tetradentate ligand (N2O2 donor set) while the other acts as a tridentate ligand (N2O donor set), having a non-coordinated methoxy group. All the synthesized complexes display intraligand 1(π–π) fluorescence and can potentially serve as photoactive materials.  相似文献   

12.
Three dinuclear and one mononuclear copper(II)-1,10-phenanthroline ternary complexes, [Cu(L1)(phen)(OH)]2 (1), [Cu(L2)(phen)(OH)]2·3H2O (2), [Cu(L3)(phen)(OH)]2 (3) and [Cu(L4)2(phen)(H2O)] (4), with thiadiazole sulfonamide derivative ligands: HL1 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)naphthalene-1-sulfonamide), HL2 (N-(5-ethylthio)-1,3,4-thiadiazol-2-yl)-4-methylbenzenesulfonamide), HL3 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide) and HL4 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)-4-methylbenzenesulfonamide) have been synthesized and characterized. In the four complexes each copper atom is five-coordinated. The structure of complexes 1, 2 and 3 consists of a dimeric unit with a C2 symmetry axis, where both coppers are bridged by two hydroxo anions. Magnetic measurements show that the dimer complexes are ferromagnetic according to the Cu–O–Cu angles. Cleavage experiments using pUC18 plasmid DNA in the presence of H2O2/ascorbic acid as an activating agent show that the title complexes are potent artificial chemical nucleases, the order of efficiency being 3 > 2 ∼ 1 > 4. Control cleavage experiments indicated that the dimer complexes are stronger artificial nucleases than the [Cu(phen)2]2+ complex under the same experimental conditions, while the monomer 4 has a lower nuclease activity than the [Cu(phen)2]2+ complex. The inhibition of the cleavage process in the presence of reactive oxygen intermediate scavengers suggests that the hydroxyl radical and the superoxide anion are reactive species for the breakage of the DNA strands.  相似文献   

13.
In this article, eight new silver coordination polymers constructed from two structurally related ligands, 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole) (bbmb) and 1,1′-(1,4-butanediyl)bis(2-ethylbenzimedazole) (bbeb), have been synthesized: [Ag(L1)(bbmb)]·C2H5OH·H2O (1), [Ag(L2)(bbmb)]·C2H5OH (2), [Ag(L3)(bbmb)] (3), [Ag2(L4)(bbmb)2]·C2H5OH (4), [Ag(L2)(bbeb)]·C2H5OH (5), [Ag(L5)(bbeb)]·CH3OH (6), [Ag2(L6)2(bbeb)]·H2O (7), and [Ag2(L7)(bbeb)2]·4(H2O) (8), where L1 = benzoate anion, L2 = p-methoxybenzoate anion, L3 = 2-amino-benzoate anion, L4 = oxalate anion, L5 = cinnamate ainon, L6 = 3-amino-benzoate anion, and L7 = fumaric anion. In 1-3, 5 and 6, the bidentate N-donor ligands (bbmb and bbeb) in trans conformations bridge neighboring silver centers to form 1D single chain structures. The carboxylate anions are attached on both sides of the chains. Moreover, 1 and 3 are extended into 2D layers, while 2 and 6 are extended into 3D frameworks through π-π interactions. In 4, the bbmb ligands bridge adjacent Ag(I) centers to form -Ag-bbmb-Ag- chains, which are further connected by L4 anions to form a 2D layer. The resulting layers are extended into 3D frameworks through strong π-π interactions. In 7, the N-donor ligands (bbeb) in trans conformations bridge two silver centers to generate a [Ag2(bbeb)]2+ unit. The adjacent [Ag2(bbeb)]2+ units are further connected via the L6 anions to form a 1D ladder chain. Moreover, the structure of compound 7 is extended into a 3D framework through hydrogen bonding and π-π interactions. In 8, two Ag(I) cations are bridged by two bbeb ligands in cis conformations to form a [Ag2(bbeb)2]2+ ring, which are further linked by L7 anions to generate a 1D string chain. Furthermore, the hydrogen bonding and π-π interactions link L7 anions to form a 2D supramolecular sheet. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

14.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

15.
The novel pyrazole-containing tetradentate ligand 2,2′-bis[[(3,5-dimethylpyrazol-1-yl)methyl]amino]-1,1′-biphenyl (N4-mpz), 1, was synthesized and three Cu(II) complexes, 24, were prepared from this compound. These complexes were characterized by a combination of elemental analysis, FAB-MS and electrochemistry and were shown to have the structure of [Cu(N4-mpz)(Pz)]X2 where X = BF4 or ClO4 or [Cu(N4-mpz)(Cl)]Cl. The X-ray structure of [Cu(N4-mpz)(Pz)] (ClO4)2 · CH3OH, 2, was determined and it showed the Cu(II) coordinated by the four nitrogen donors from the ligand along with an exogenous pyrazole donor that had been extracted from another molecule of the ligand. Cyclic voltammetry studies indicated that the complexes undergo quasi-reversible one-electron reductions in acetonitrile at potentials between 396 and 422 mV versus Ag/AgCl.  相似文献   

16.
Four d10-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand (Htpim), {[Zn2(Htpim)4Cl4] · 8H2O}n (1), {[Cd(tpim)2(H2O)2] · 4CH3OH}n (2), {[Cu2(Htpim)(PPh3)2I2] · CH3CN}n (3) and {[Ag(Htpim)](NO3) · CH2Cl2}n (4), have been synthesized and characterized by elemental analyses, IR, thermogravimetric and X-ray structural analyses. Both complexes 1 and 2 show one dimensional ribbon-like structures. Via intermolecular hydrogen bonds, a 2D supramolecular network and 3D framework are formed for 1 and 2, respectively. Complex 3 shows a 1D zigzag chain with a CuI2Cu rhomboid dimer. Complex 4 shows a 1D ladder-like polymer with two different metallacycles. The luminescent properties of all the complexes have been studied in the solid state.  相似文献   

17.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

18.
Several new 1D coordination polymers have been synthesised using the anionic ligand carbamoyldicyanomethanide, C(CN)2(CONH2) (cdm). The polymeric complexes [Cu(cdm)2(py)2]·2MeOH (1), [Cu(cdm)2(4-Etpy)2]·2MeOH (2), [Cu(cdm)2(3,5-Me2pzH)2]·2MeOH (3) and [Cu(cdm)2(3-HOCH2py)2]·2MeOH (4) (py = pyridine; 3,5-Me2pzH = 3,5-dimethylpyrazole) contain Cu(II) atoms bridged by μ2-(N,N′) cdm ligands between equatorial and axial coordination sites. The use of monodentate co-ligands brings about polymeric products, in contrast to the use previously of chelating co-ligands which facilitate the formation of discrete products. These 1D polymeric complexes are connected by hydrogen bonding between the amide functionalities and the lattice solvent. In the structures of 3 and 4 the neutral ligands also contain hydrogen bond donor groups that supplement the amide ring motif. Two other complexes have been obtained that are polymeric chains of alkoxide-bridged Cu(II) dimers. The complexes [Cu(cdm)(MeO)(2-amp)] (5) and [Cu(cdm)(dmap)] (6) (2-amp = 2-(aminomethyl)pyridine and dmap = dimethylaminopropoxide) are remarkably similar despite the different ligands that they contain. Bridging between dimers is via μ2-(N,O) cdm ligands, consequently altering the nature of the hydrogen bonding between adjacent chains compared to the simple polymeric species 13.  相似文献   

19.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

20.
The reaction of CuSO4 · H2O with 4-bpytm [4-bpytm = bis(4-pyridylthio)methane] in EtOH afforded the complex [Cu(SO4)(4-bpytm)(H2O)3] · H2O (1 · H2O) while the reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH afforded the complex [Cu(NO3)2(4-bpytm)2] · H2O (2 · H2O). The reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH/dmf under microwave irradiation afforded the pseudo-polymorph [Cu(NO3)2(4-bpytm)2] · Solv (2 · Solv). Compound 1 · H2O forms helical chains while compounds 2 · H2O and 2 · Solv are 2D coordination polymers with a (4,4) topology based on rhombic grids in 2 · H2O and on a parquet motif in 2 · Solv. The 3D supramolecular organization through hydrogen bonding is analyzed for the three compounds and their thermal behaviour was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号