首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its “renormalized” counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a “nonlinear nonequilibrium” contribution which is written as a correlation between work and heat. We argue that the “nonlinear nonequilibrium” contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar “twist” may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.  相似文献   

3.
The challenge of calculating nonequilibrium entropy in polymeric liquids undergoing flow was addressed from the perspective of extending equilibrium thermodynamics to include internal variables that quantify the internal microstructure of chain-like macromolecules and then applying these principles to nonequilibrium conditions under the presumption of an evolution of quasie equilibrium states in which the requisite internal variables relax on different time scales. The nonequilibrium entropy can be determined at various levels of coarse-graining of the polymer chains by statistical expressions involving nonequilibrium distribution functions that depend on the type of flow and the flow strength. Using nonequilibrium molecular dynamics simulations of a linear, monodisperse, entangled C1000H2002 polyethylene melt, nonequilibrium entropy was calculated directly from the nonequilibrium distribution functions, as well as from their second moments, and also using the radial distribution function at various levels of coarse-graining of the constituent macromolecular chains. Surprisingly, all these different methods of calculating the nonequilibrium entropy provide consistent values under both planar Couette and planar elongational flows. Combining the nonequilibrium entropy with the internal energy allows determination of the Helmholtz free energy, which is used as a generating function of flow dynamics in nonequilibrium thermodynamic theory.  相似文献   

4.
非平衡统计信息理论   总被引:5,自引:0,他引:5       下载免费PDF全文
邢修三 《物理学报》2004,53(9):2852-2863
阐述了以表述信息演化规律的信息(熵)演化方程为核心的非平 衡统计信息理论.推导出了 Shannon信息(熵)的非线性演化方程,引入了统计物理信息并 推导出了它的非线性演化方程.这两种信息(熵)演化方程一致表明:统计信息(熵)密度 随时间的变化率是由其在坐标空间(和态变量空间)的漂移、扩散和减损(产生)三者引起 的.由此方程出发,给出了统计信息减损率和统计熵产生率的简明公式、漂移信息流和扩散 信息流的表达式,证明了非平衡系统内的统计信息减损(或增加)率等于它的统计熵产生( 或减少)率、信息扩散与信息减损同时 关键词: 统计信息(熵)演化方程 统计信息减损率 统计熵产 生率 信息(熵)流 信息(熵)扩散 动态互信息  相似文献   

5.
Starting from microscopic mechanics, we derive thermodynamic relations for heat conducting nonequilibrium steady states. The extended Clausius relation enables one to experimentally determine nonequilibrium entropy to the second order in the heat current. The associated Shannon-like microscopic expression of the entropy is suggestive. When the heat current is fixed, the extended Gibbs relation provides a unified treatment of thermodynamic forces in the linear nonequilibrium regime.  相似文献   

6.
Time Evolution in Macroscopic Systems. II. The Entropy   总被引:1,自引:1,他引:0  
The concept of entropy in nonequilibrium macroscopic systems is investigated in the light of an extended equation of motion for the density matrix obtained in a previous study. It is found that a time-dependent information entropy can be defined unambiguously, but it is the time derivative or entropy production that governs ongoing processes in these systems. The differences in physical interpretation and thermodynamic role of entropy in equilibrium and nonequilibrium systems is emphasized and the observable aspects of entropy production are noted. A basis for nonequilibrium thermodynamics is also outlined.  相似文献   

7.
This article explores the application of thermodynamic and statistical thermodynamic formalism to information theory problems. In particular, the applicability of the transformation theory of thermodynamics is investigated. After a brief tutorial discussion of thermodynamic and statistical thermodynamic methods and concepts, their information theory analogues are developed. Besides information theory entropy, the information theory counterparts of temperature, chemical potential, Helmholtz free energy, etc., are developed and related to conventional information theory concepts such as channel capacity, matching of source and channel, etc. Information theory theorems are proved via the statistical thermodynamic analogue method; and, finally, several problems are formulated and solved using thermodynamic-like transformations. This article is aimed chiefly at bridging the interface between the two disciplines, and is intended to be provocative. Therefore, no attempt has been made to have it be all inclusive.  相似文献   

8.
We analyse the statistical entropy of two-dimensional lattice-gas models in terms of the contributions which arise from space correlations of increasing order. The “residual multiparticle entropy”, defined as the contribution to the excess entropy that is associated with correlations involving more than two particles, is calculated for the Ising and Coulomb lattice gases. The thermodynamic behaviour of the residual multiparticle entropy is then discussed in relation to the phase diagram of the model and the existence of underlying signatures of order-disorder phase transitions is also investigated. Received 31 December 1998 and Received in final form 8 March 1999  相似文献   

9.
An information gain depending on two nonequilibrium coarse-grained statistical operators is discussed. The relation between the time derivative of information gain and excess entropy production is derived. Prigogine's stability criterion is expressed by means of the information gain. It is shown in the domain of linear nonequilibrium thermodynamics that zero time derivative of information gain corresponds to a minimum of entropy production and K theorem can be formulated.  相似文献   

10.
Recently, in their attempt to construct steady state thermodynamics (SST), Komatsu, Nakagawa, Sasa, and Tasaki found an extension of the Clausius relation to nonequilibrium steady states in classical stochastic processes. Here we derive a quantum mechanical version of the extended Clausius relation. We consider a small system of interest attached to large systems which play the role of heat baths. By only using the genuine quantum dynamics, we realize a heat conducting nonequilibrium steady state in the small system. We study the response of the steady state when the parameters of the system are changed abruptly, and show that the extended Clausius relation, in which “heat” is replaced by the “excess heat”, is valid when the temperature difference is small. Moreover we show that the entropy that appears in the relation is similar to von Neumann entropy but has an extra symmetrization with respect to time-reversal. We believe that the present work opens a new possibility in the study of nonequilibrium phenomena in quantum systems, and also confirms the robustness of the approach by Komatsu et al.  相似文献   

11.
Nonequilibrium steady-state currents, unlike their equilibrium counterparts, continuously dissipate energy into their physical surroundings leading to entropy production and time-reversal symmetry breaking. This Letter discusses these issues in the context of quantum impurity models. We use simple thermodynamic arguments to define the rate of entropy production sigma and show that sigma has a simple information-theoretic interpretation in terms of nonequilibrium distribution functions. This allows us to show that the entropy production is strictly positive for any nonequilibrium steady state. We conclude by applying these ideas to the resonance level model and the Kondo model.  相似文献   

12.
In this paper, we develop dynamic statistical information theory established by the author. Starting from the ideas that the state variable evolution equations of stochastic dynamic systems, classical and quantum nonequilibrium statistical physical systems and special electromagnetic field systems can be regarded as their information symbol evolution equations and the definitions of dynamic information and dynamic entropy, we derive the evolution equations of dynamic information and dynamic entropy that des...  相似文献   

13.
14.
There are only a very few known relations in statistical dynamics that are valid for systems driven arbitrarily far-from-equilibrium. One of these is the fluctuation theorem, which places conditions on the entropy production probability distribution of nonequilibrium systems. Another recently discovered far from equilibrium expression relates nonequilibrium measurements of the work done on a system to equilibrium free energy differences. In this paper, we derive a generalized version of the fluctuation theorem for stochastic, microscopically reversible dynamics. Invoking this generalized theorem provides a succinct proof of the nonequilibrium work relation.  相似文献   

15.
The extension of quantum mechanics to a general functional space (“rigged Hilbert space”), which incorporates time-symmetry breaking, is applied to construct extract dynamical models of entropy production and entropy flow. They are illustrated by using a simple conservative Hamiltonian system for multilevel atoms coupled to a time-dependent external force. The external force destroys the monotonicity of the ℋ-function evolution. This leads to a model of the entropy flow that allows a steady nonequilibrium structure of the emitted field around the unstable particles.  相似文献   

16.
It is shown that the dual to the linear programming problem that arises in constraint-based models of metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical potential analogues, and the objective is to minimize free energy consumption given a free energy drain corresponding to growth. The interpretation is distinct from conventional nonequilibrium thermodynamics, although it does satisfy a minimum entropy production principle. It can be used to motivate extensions of constraint-based modeling, for example, to microbial ecosystems.  相似文献   

17.
A generalization of the Onsager-Machlup theory from equilibrium to nonequilibrium steady states and its connection with recent fluctuation theorems are discussed for a dragged particle restricted by a harmonic potential in a heat reservoir. Using a functional integral approach, the probability functional for a path is expressed in terms of a Lagrangian function from which an entropy production rate and dissipation functions are introduced, and nonequilibrium thermodynamic relations like the energy conservation law and the second law of thermodynamics are derived. Using this Lagrangian function we establish two nonequilibrium detailed balance relations, which not only lead to a fluctuation theorem for work but also to one related to energy loss by friction. In addition, we carried out the functional integral for heat explicitly, leading to the extended fluctuation theorem for heat. We also present a simple argument for this extended fluctuation theorem in the long time limit. PACS numbers: 05.70.Ln, 05.40.-a, 05.10.Gg.  相似文献   

18.
Thermodynamics of feedback control processes, including the minimum work consumption of measurement, work extraction, and erasure processes of thermodynamic small systems have been investigated by researchers. We take systems with uncertain macroscopic states as the study object and study the feedback control processes of nonequilibrium macroscopic systems considering both the information entropy of microscopic states and macroscopic states. First we consider a system set that consists of systems with several macroscopic states and discuss the relations among the average information entropy of the system set, the thermodynamic entropy of the systems and the information entropy of macroscopic states of the systems. Then, we derive the expression of the average maximum net work obtained through feedback control, which relates to the free energy of the systems and the minimum work consumption of the measurement and erasure processes.  相似文献   

19.
MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.  相似文献   

20.
We generalize the second law of thermodynamics in its maximum work formulation for a nonequilibrium initial distribution. It is found that in an isothermal process, the Boltzmann relative entropy (H-function) is not just a Lyapunov function but also tells us the maximum work that may be gained from a nonequilibrium initial state. The generalized second law also gives a fundamental relation between work and information. It is valid even for a small Hamiltonian system not in contact with a heat reservoir but with an effective temperature determined by the isentropic condition. Our relation can be tested in the Szilard engine, which will be realized in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号