首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined gas electron diffraction and quantum chemical (B3LYP/6-311+G**, B3LYP/cc-pVTZ) study of the molecular structure of 2-nitrobenzenesulfonic acid (2-NBSA) is performed. Quantum chemical calculations show that the 2-NBSA molecule has five conformers, and the Gibbs energy of one of them is lower by more than 4.5 kcal/mol than the energy of the other conformers. It is found experimentally that the saturated vapor of 2-NBSA at T = 394(5) K contains only the low-energy conformer that has an intramolecular hydrogen bond between the H atom of the hydroxyl group and one of the O atoms of the NO2 group. The C-C-S-O(H) torsion angle determining the position of the S-O(H) bond is ?72(7)°, while the NO2 group is substantially turned relative to the benzene ring plane (C1-C2-N-O = 40(5)°). The following experimental values of the internuclear distances are obtained for this conformer (Å): r h1(C-H)av = 1.07(2), r h1(C-C)av = 1.401(4), r h1(C-S) = 1.767(6), r h1(S=O)av = 1.412(4), r h1(S-O) = 1.560(6), r h1(N-O)av = 1.217(5), r h1(C-N) = 1.461(8), r h1(O-H) = 0.99(3).  相似文献   

2.
A combined electron diffraction and quantum-chemical (MP2/6-31G**) study of the molecular structure of 2-methylbenzenesulfochloride at 336(5) K was carried out. It was found that the gas phase contained only one conformer, C 1. The following structural parameters were obtained: r h1(C-H)av = 1.095(8) Å, r h1(C-C)Ph = 1.402(4) Å, r h1(CPh-Cmeth) = 1.507(13) Å, r h1(CPh-S) = 1.763(6) Å, r h1(S=O) = 1.418(4) Å, r h1(S-Cl) = 2.048(5) Å, ∠(H-C-H)meth/av = 107.3(96)°, ∠(Cl-S-O)av = 106.4(3)°, ∠CPh-S-Cl = 100.8(9), ∠O=S=O = 120.8(10)°. The CC-CS-S-Cl torsion angle that defines the position of the S-Cl bond relative to the plane of the benzene ring is 75.6(20)°. The B3LYP/6-311+G** calculated barriers of internal rotation of the methyl and sulfochloride groups are 1.2 kcal/mol and V 01 = 10.2 (V 02 = 4.1) kcal/mol, respectively.  相似文献   

3.
The molecular structure of 2-chlorobenzenesulfonyl chloride was studied by electron diffraction and quantum-chemical (2/6-31G**, B3LYP/6-311++G**) methods at 337(3) K. Only one (C 1) conformer was found in the gas phase. The following structural parameters were obtained: r h1(C-H)av = 1.105(6) Å, r h1(C-C)av = 1.398(3) Å, r h1(C-S) = 1.783(11) Å, r h1(S=O)av = 1.427(3) Å, r h1(S-Cl) = 2.048(4) Å, r h1(C-Cl) = 1.731(9) Å, ∠(C-S=O1) = 109.9(8) °, ∠(C-S=O2) = 106.9(8) °, ∠(Cl1-S-O1) = 107.3(4) °, ∠(Cl1-S-O2) = 106.4(4) ∠, ∠C-S-Cl = 102.1(6) °, ∠O=S=O = 122.3(11) °. The C2-C1-S-Cl1 torsion angle that defines the position of the S-Cl bond relative to the plane of the benzene ring was 69.7(8) °. The B3LYP/6-311++G** calculated barriers of internal rotation of the sulfonyl chloride group were V 01 = 9.7 kcal/mol and V 02 = 3.6 kcal/mol.  相似文献   

4.
A combined gas-phase electron diffraction and quantum chemical (B3LYP/6-311+G**, B3LYP/cc-pVTZ, MP2/6-31G*, and MP2/cc-pVTZ) study of the structure of the 4-nitrobenzene sulfonyl chloride molecule is performed. It is found that at a temperature of 391(3) K only one conformer with C s symmetry is present in the gas phase. The following experimental values of structural parameters are obtained: r h1(C-H)av = 1.086(6) Å, r h1(C-C)av = 1.395(3) Å, r h1(C1-S) = 1.773(4) Å, r h1(S=O) = 1.423(3) Å, r h1(S-Cl) = 2.048(4) Å, r h1(N-O) = 1.224(3) Å, r h1(N-C4) = 1.477(3) Å, ∠(C1-S=O) = 109.0(4)°, ∠(Cl-S-O) = 106.7(2)°, ∠C1-S-Cl = 100.2(13)°, ∠O=S=O = 122.9(11)°, ∠O=N=O = 123.6(5)°. The C2-C1-S-Cl torsion angle that characterizes the position of the S-Cl bond relative to the benzene ring plane is 89(4)°. The NO2 group lies in the benzene ring plane. Internal rotation barriers calculated by B3LYP/6-311+G** and MP2/6-31G* methods are: V 1 = 4.7 kcal/mol and 5.3 kcal/mol for the sulfonyl chloride group; V 2 = 4.9 kcal/mol and 6.0 kcal/mol for the nitro group.  相似文献   

5.
The molecular structure of zinc acetylacetonate was studied in a simultaneous electron diffraction and mass spectrometric experiment at 376(7) K and by quantum-chemical calculations. The Zn(acac)2 molecule has a structure of D 2d symmetry with the chelate rings lying in mutually perpendicular planes. The main geometrical parameters of the molecule are r h1(Zn-O) = 1.942(4) Å, r h1(C-O) = 1.279(3) Å, r h1(C-Cr) = 1.398(3) Å, r h1(C-C m ) = 1.504(5) Å, ∠(O-Zn-O) = 93.2(7)°, ∠(Zn-O-C) = 125.9(7)°, ∠(C-Cr-C) = 125.8(14)°, ∠(O-C-C m ) = 115.2(9)°. The effective rotation angle of methyl groups is close to 30°, which is indicative of the free rotation of these groups. The vibration frequencies were obtained by quantumchemical calculations, and the IR spectrum of the Zn(acac)2 molecule was interpreted.  相似文献   

6.
The molecular structure and conformation of nitrobenzene has been reinvestigated by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) spectroscopic data, and quantum chemical calculations. The equilibrium r e structure of nitrobenzene was determined by a joint analysis of the GED data and rotational constants taken from the literature. The necessary anharmonic vibrational corrections to the internuclear distances (r e ? r a) and to rotational constants (B e (i)  ? B 0 (i) ) were calculated from the B3LYP/cc-pVTZ quadratic and cubic force fields. A combined analysis of GED and MW data led to following structural parameters (r e) of planar nitrobenzene (the total estimated uncertainties are in parentheses): r(C–C)av = 1.391(3) Å, r(C–N) = 1.468(4) Å, r(N–O) = 1.223(2) Å, r(C–H)av = 1.071(3) Å, \({\angle}\)C2–C1–C6 = 123.5(6)°, \({\angle}\)C1–C2–C3 = 117.8(3)°, \({\angle}\)C2–C3–C4 = 120.3(3)°, \({\angle}\)C3–C4–C5 = 120.5(6)°, \({\angle}\)C–C–N = 118.2(3)°, \({\angle}\)C–N–O = 117.9(2)°, \({\angle}\)O–N–O = 124.2(4)°, \({\angle}\)(C–C–H)av = 120.6(20)°. These structural parameters reproduce the experimental B 0 (i) values within 0.05 MHz. The experimental results are in good agreement with the theoretical calculations. The barrier height to internal rotation of nitro group, 4.1±1.0 kcal/mol, was estimated from the GED analysis using a dynamic model. The equilibrium structure was also calculated using the experimental rotational constants for nitrobenzene isotopomers and theoretical rotation–vibration interaction constants.  相似文献   

7.
Gas electron diffraction at a temperature T of 641(5) K is used to study the structure of an N,N′-ethylenebis(salicylaldiminato) zinc(II) molecule, ZnO2N2C16H14, further Zn(salen). The structure of a gaseous Zn(salen) complex has C 2 symmetry and is characterized by a substantial turn of two chelating fragments of the ligand with respect to each other, and also by a big difference in the length of coordination bonds: r h1(Zn-O)=1.902(7) Å r h1(Zn-N)= 2.027(7) Å. Results of the DFT/B3LYP calculation with 6-31G* and CEP,TZV basis sets of the molecule structure well agree with the experimental data. The electronic structure of Ni(salen), Cu(salen), Zn(salen), and Zn(acacen) molecules is considered.  相似文献   

8.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

9.
The structure and internal rotation of the bromonitromethane molecule are studied using electron diffraction analysis and quantum chemical calculations. The electron diffraction data are analyzed within the models of a general intramolecular anharmonic force field and quantum chemical pseudoconformers to account for the adiabatic separation of a large amplitude motion associated with the internal rotation of the NO2 group. The following experimental bond lengths and valence angles are obtained for the equilibrium orthogonal configuration of the molecule with Cs symmetry: re(N=O) = 1.217(5) Å, re(C–N) = 1.48(2) Å, re(C–Br) = 1.919(5) Å, ∠еBr–C–N = 109.6(9)°, ∠еO=N=O = 125.9(9)°. The equilibrium geometry parameters are in good agreement with CCSD(T)/cc-pVTZ calculations. Thermally averaged parameters are calculated using the equilibrium geometry and quadratic and cubic quantum chemical force constants. The barrier to internal rotation cannot be determined reliably based on the electron diffraction data used in this work. There is a 82% probability that the equilibrium configuration with orthogonal C–Br and N=O bonds is most preferable, and internal rotation barrier does not exceed 280 cm-1, which agrees with CCSD(T)/cc-pVTZ calculations.  相似文献   

10.
A combined electron diffraction (T = 394(5) K) and quantum-chemical (MP2/6-31G**) study has been performed to investigate the molecular structure of 1,3-benzenedisulfochloride (1,3-BDSC). The 1,3-BDSC molecule was found to exist as the trans (I) and cis (II) stable conformers where the planes containing S-Cl bonds are perpendicular to the plane of the benzene ring. The energy of conformer I is 0.13 kJ/mol lower than that of conformer II. The mutual effect of the sulfochloride groups was found to be absent, which is evident from the coincident bond lengths and angles in the two conformers. The main structural parameters of the conformers are r h1(C-H)av = 1.103(4) Å, r h1(C-C)av = 1.401(3) Å, r h1(C-S) = 1.767(4) Å, r h1(S=O) = 1.422(3) Å, r h1(S-Cl) = 2.048(4) Å, ∠Cl-S-O = 106.6(2)°, ∠C-S-Cl = 100.4(5)°, ∠ O-S-O = 123.2(5)°.  相似文献   

11.
The structure of trans-[RuNO(NH3)4(H2O)](NO3)3 (I) and trans-[RuNO(NH3)4(NO3)](NO3)2 (II) was determined by XRD. Crystallographic data are as follows: space group I41/a; a = b = 18.280(1) Å, c = 15.129(1) Å, R = 0.0244 (I), and space group Cm, a = 11.5620(3) Å, b = 7.9934(2) Å, c = 7.7864(2) Å, β = 127.124(1)°, R = 0.0139 (II). Interatomic distances for complex particles of fac- and mer- [RuNO(NH3)2(NO3)3] (III and IV, respectively) were determined by EXAFS.  相似文献   

12.
Gas-phase electron diffraction and quantum-chemical calculations were used to study the molecular structure of diphenyl sulfide. It is shown that the diphenyl sulfide molecule (PhS2) possesses C 2 symmetry. The main geometrical parameters are as follows: r a(C-S) 1.774(2) Å, r a(C-C)av 1.401 Å, ∠CSC 103.4(11)°, ∠SCC 122.5 and 117.9(6)°, and ∠CCCav 120.0°. The torsion angles about C-S bonds τ(CSCC) are ?49.6(1.4)°.  相似文献   

13.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

14.
α-Naphthalenesulfonyl chloride, α-NaphSC, was studied by gas-phase electron diffraction (GED) and quantum chemical calculations (HF/6-311 + G**, HF/aug-cc-pVDZ, B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3LYP/aug-cc-pVDZ, B3LYP/aug-cc-pVTZ, MP2/cc-pVDZ, and MP2/cc-pVTZ). The calculations predict the existence of two conformers with C 1 (I) and C s (II) symmetries. The most stable conformer I has an enantiomer. The experimental data of α-NaphSC obtained at 370(5) K could be best fitted by a C 1 symmetry model indicating that only this form exists in the gas-phase. In this model the Cα–S–Cl plane deviates from the perpendicular orientation relative to the plane of the naphthalene skeleton. Under the applied experimental conditions, the mole fraction of a second less stable conformer II of α-NaphSC predicted by calculations is no more than 1 %. The following geometrical parameters of conformer I were obtained from the experiment (Å and °; uncertainties are in parentheses): r h1(C–H) = 1.082(6), r h1(C–C)cp = 1.407(3), r h1(C–S) = 1.764(5), r h1(S–O)av = 1.425(3), r h1(S–Cl) = 2.051(5), ∠C–Cα–C = 122.5(1), ∠Cα–S–Cl = 101.5(10); C9–C1–S–Cl = 71.4(21). The calculated barriers to internal rotation of the sulfonyl chloride group exceed considerably the thermal energy values corresponding to the temperatures of the GED experiments. Natural bond orbitals analysis of the electron density distribution was carried out to explain the peculiarities of the molecular structure of the studied compound and the deviation from the structures of β-NaphSHal molecules and their benzene analogs.  相似文献   

15.
The structure and internal rotation of the 2-methyl-2-nitropropane molecule is studied by electron diffraction and quantum chemical calculations with the use of microwave and vibrational spectroscopy data. The electron diffraction data are analyzed within the general intramolecular anharmonic force field model and the quantum chemical pseudoconformer model, considering the adiabatic separation of the degree of freedom of large amplitude motion, i.e., the internal rotation of the NO2 group. The equilibrium eclipsed configuration of the C s symmetry molecule has the following experimental bond lengths and valence angles: r e(N=O) = 1.226//1.226(8) Å, r e(C–N)//r e(C–C) = 1.520//1.515/1,521(4) Å, ∠еC–C–N = = 109.1/106,1(8)°, ∠еO=N=O = 124.2(6)°, ∠eC–C–Havg = 110(3)°. The equilibrium geometry parameters are well consistent with MP2/cc-pVTZ quantum chemical calculations and microwave spectroscopy data. The thermally average parameters previously obtained within the small vibration model show a satisfactory agreement with the new results. The electron diffraction data used in this work do not allow a reliable determination of the barrier to internal rotation. However, at a barrier of 203(2) cal/mol, which is derived from the microwave study, it follows from the electron diffraction data that the equilibrium configuration must correspond to an eclipsed arrangement of C–C and N=O bonds, which is also consistent with the results of quantum chemical calculations of various levels.  相似文献   

16.
The structure of the mebicar molecule has been studied by gas-phase electron-diffractometry using quantum chemical calculations. An eclipsed conformation along the C-C bond (torsion angle ?(H-C-C-H) = 10°) and flattened semi-chair conformations of cyclic fragments have been found. The bond lengths (r g ) and angles (∠α) show the following average values: r(C-C) 1.576(3) Å, r(C-N) 1.460(3) Å, r(C(O)-N) 1.390(4) Å, r(C=O) 1.211(5) Å, r(C-H) 1.090(5) Å, ∠CCN 103.0(5)°, ∠CNC(O) 112.2(1)°, ∠CNC 122.4(1)°. The dihedral angle between the cyclic fragments is 116.6°.  相似文献   

17.
The saturated vapor of lutetium tribromide was studied in the simultaneous electron diffraction and mass spectrometric experiment at 1161(10) K. Along with the monomer molecular forms, the vapor contained an insignificant (up to 3 mol.%) amount of dimers. The parameters of the effective configuration of the monomer molecule were determined. The internuclear distance r g(Lu-Br) is 2.553(5) Å, and the effective bond angle ∠g(Br-Lu-Br) is 115.3(10)°. The temperature-averaged r g parameters were calculated by the B3LYP method using the potential functions obtained by scanning the PES along the vibration coordinates and compared with similar experimental values. It was shown that the geometrical model of the LuBr3 molecule of D 3h symmetry was consistent with the experimental data. The dependence of the r g parameters of the LuBr3 molecule on the vapor temperature was studied theoretically.  相似文献   

18.
The saturated vapors of samarium and dysprosium tribromides were investigated for the first time by electron diffraction with mass spectrometric monitoring at temperatures of 1151(10) K and 1141(10) K. Dimer molecules (up to 2 mole %) were found in vapors along with monomer molecules. The SmBr3 and DyBr3 molecules have a pyramidal effective configuration with bond angles ∠gBr-Sm-Br=115.1(9)° and ∠gBr-Dy-Br=115.3(7)°. The difference between the internuclear distances of SmBr3 and DyBr3 (r g(Sm-Br) = 2.653(6) Å and r g(Dy-Br) = 2.609(5) Å) coincides with the difference between the ionic radii of Sm3+ and Dy3+. The insignificant pyramidality of the r g configuration and the low deformation vibration frequencies of SmBr3 and DyBr3 may be indicative of a planar equilibrium geometry of D 3h symmetry. The equilibrium distances r e(Sm-Br) and r e(Dy-Br) have been evaluated and compared with the values obtained by quantum chemical calculations.  相似文献   

19.
From the solution of the system Na2WO4-HNO3-Ni(NO3)2-H2O acidified to Z = ν(H+)/ν(WO 4 2? ) = 1.29, the green crystals of nickel paratungstate B Ni5[W12O40(OH)2]·37H2O are isolated. By FTIR spectroscopy the isopoly anion is shown to belong to the structural type of paratungstate B. Using single crystal X-ray analysis, the structure of Ni5[W12O40(OH)2]·37H2O is solved (M r = 3840.36, monoclinic, P21/c space group, a = 21.9061(6) Å, b = 14.9297(4) Å, c = 22.1391(6) Å, β = 107.609(3)°, V = 6901.4(3)Å3 at T = 293 K, Z = 4, dx = 3.696 g/cm3, F 000 = 6944, μ = 21.368 mm?1, ?33 ≤ h ≤ 33, ?22 ≤ k ≤ 22, ?33 ≤ l ≤33; the final uncertainty values for the observed reflections are R F = 0.0532, wR 2 = 0.0831 (R F = 0.1088, wR 2 = 0.0894 over all independent reflections), S = 0.978; CSD-421468).  相似文献   

20.
On the basis of analysis of published data on the reaction efficiency of various polymer materials and graphite in their interaction with fast oxygen atoms (energy of about 4.5 eV) as obtained in flight tests of materials in low-Earth orbits of the International Space Station and ground tests, probability P r of chemical oxidation reactions accompanied by ablation has been evaluated. Estimates have been made for 33 polymers consisting of carbon, hydrogen, oxygen, and nitrogen and graphite for two extreme cases when the carboncontaining oxidation products are either CO or CO2 alone. The average probability values found are P r(CO)(av) = 0.184 and P r(CO2)(av) = 0.317. The probability values range from P r(CO) = 0.604 and P r(CO2) = 0.963 for allyl diglycol carbonate to P r(CO) = 0.038 and P r(CO2) = 0.075 for pyrolytic graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号