首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydroxyl- and pyridyl-functionalized diiron azadithiolate complexes [{(μ-SCH2)2N(CH2CH2OH)}Fe2(CO)6] (1) and [{(μ-SCH2)2N(CH2CH2OOCPy)}Fe2(CO)6] (Py = pyridyl) (2) were prepared as biomimetic models of the active site of Fe-only hydrogenases. Both complexes were characterized by MS, IR, 1H NMR spectra and elemental analysis. The molecular structures of 1 and 2 were determined by single crystal X-ray analysis. A network is constructed by intermolecular H-bonds in the crystals of 1. An S?O intermolecular contact was found in the crystals of 2, which is scarcely found for organometallic complexes. Cyclic voltammograms of 1 and 2 were studied to evaluate their redox properties.  相似文献   

2.
A series of N-functionalized diiron azadithiolate complexes, [(µ-SCH2)2NCH2CO2Me]Fe2(CO)5?L [L?=?CO (1); PPh3 (2); Ph2PCH2PPh2 (3)], as active site models of [FeFe]-hydrogenases has been prepared and characterized. While 1 was prepared by a sequential reaction of (µ-HS)2Fe2(CO)6 with two equiv. of aqueous HCHO, followed by treatment of (µ-HOCH2S)2Fe2(CO)6 with one equiv. of H2NCH2CO2Me in 46% yield; 2 and 3 were prepared by a carbonyl substitution reaction of 1 with PPh3 or Ph2PCH2PPh2 in the presence of Me3NO?·?2H2O in 90% and 85% yields, respectively. The crystal structures of 1 and 2 revealed that the substituent attached to the bridgehead nitrogen occupies an equatorial position and the PPh3 ligand resides in an axial position of the square pyramid of Fe2.  相似文献   

3.
Two N-functionally substituted diiron azadithiolate complexes, [(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)6 (1) and {[(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)5Ph2PCH}2 (2) as models for the active site of [FeFe] hydrogenases, have been prepared and fully characterized. Complex 1 was prepared by the reaction of [(µ-SCH2)2NCH2CH2OH]Fe2(CO)6 with p-iodobenzoic acid in the presence of 4-dimethylaminopyridine (DMAP) and N,N′-dicyclohexylcarbodiimide (DCC) in 78% yield. Further treatment of 1 with 1 equiv. of Me3NO?·?2H2O followed by 0.5 equiv. of trans-1,2-bis(diphenylphosphino)ethylene (dppe) affords 2 in 60% yield. The new complexes 1 and 2 were characterized by IR and 1H (13C, 31P) NMR spectroscopic techniques and their molecular structures were confirmed by X-ray diffraction analysis. The molecular structure of 1 has two conformational isomers, in one isomer its N-functional substituent is axial to its bridged nitrogen and in the other isomer its N-functional substituent is equatorial. The crystal structure of 2 revealed that its N-functional substituents are equatorial to its nitrogens and dppe occupies the two apical positions of the square-pyramidal irons.  相似文献   

4.
In order to improve the hydro- and protophilicity of the active site models of the Fe-only hydrogenases, three diiron dithiolate complexes with DAPTA ligand(s) (DAPTA = 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane), (μ-pdt)[Fe(CO)3][Fe(CO)2(DAPTA)] (1, pdt = 1,3-propanedithiolato), (μ-pdt)[Fe(CO)2(DAPTA)]2 (2) and (μ-pdt)[Fe(CO)2(PTA)][Fe(CO)2(DAPTA)] (3), were prepared and spectroscopically characterized. The water solubility of DAPTA-coordinate complexes 1-3 is better than that of the PTA-coordinate analogues. With complexes 1-3 as electrocatalysts, the overvoltage is reduced by 460-770 mV for proton reduction from acetic acid at low concentration in CH3CN. Significant decrease, up to 420 mV, in reduction potential for the Fe(I)Fe(I) to Fe(I)Fe(0) process and the curve-crossing phenomenon are observed in cyclic voltammograms of 2 and 3 in CH3CN/H2O mixtures. The introduction of the DAPTA ligand to the diiron dithiolate model complexes indeed makes the water solubility of 2 and 3 sufficient for electrochemical studies in pure water, which show that the proton reduction from acetic acid in pure water is electrochemically catalyzed by 2 and 3 at ca. −1.3 V vs. NHE.  相似文献   

5.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

6.
The ligand exchange reaction of IMe-(CH2)2-PPh2 (IMe = 1-methyimidazol-2-ylidene) and the hexacarbonyl complex [{Fe2{μ-S(CH2)3S}(CO)6] (1) resulted in the formation of the chelated complex [{Fe2{μ-S(CH2)3S}(CO)4(IMe-(CH2)2-PPh2)] (2). The molecular structure of 2 was confirmed by spectroscopic and X-ray analyses. This complex catalyzes proton reduction. Low temperature NMR studies on the protonation of 2 revealed the formation of a terminal hydride intermediate.  相似文献   

7.
A tris(N-pyrrolidinyl)phosphine (P(NC4H8)3) monosubstituted complex, [(μ-pdt)Fe2(CO)5P(NC4H8)3] (2) was synthesized as a functional model of the hydrogen-producing capability of the iron hydrogenase active site. The structure was fully characterized by X-ray crystallography. IR and electrochemical studies have indicated that the P(NC4H8)3 ligand has better electron-donating ability than that of those phosphine ligands, such as PMe3, PTA (1,3,5-triaza-7-phosphaadamantane), PMe2Ph PPh3, and P(OEt)3. The electrocatalytic activity of 2 was recorded in CH3CN in the absence and presence of weak acid, HOAc. The cathodic shift of potential at −1.98 V and the dependence of current on acid concentration have indicated that complex 2 can catalyze the reduction of protons to hydrogen at its Fe0FeI level in the presence of HOAc. IR spectroelectrochemical experiments are conducted during the reduction of 2 under nitrogen and carbon monoxide, respectively. The formation of a bridging CO group during the reduction of 2 at −1.98 V has been identified using IR spectroelectrochemical techniques, and an electrocatalytic mechanism of 2 consistent with the spectroscopic and electrochemical results is proposed.  相似文献   

8.
9.
Treatment of parent compounds [(μ-SCH2)2X]Fe2(CO)6 (A, X = O; B, X = NBu-t; C, X = NC6H4OMe-p) with N-heterocyclic carbene IMes (IMes = 1,3-bis(mesityl)imidazol-2-ylidene) generated in situ through reaction of imidazolium salt IMes ·HCl with n-BuLi or t-BuOK afforded the monocarbene-substituted complexes [(μ-SCH2)2X]Fe2(CO)5(IMes) (1, X = O; 2, X = NBu-t; 3, X = NC6H4OMe-p). Similarly, the monocarbene and dicarbene-substituted complexes [(μ-SCH2)2NBu-t]Fe2(CO)5[IMes(CH2)3IMes]·HBr (4) and [(μ-SCH2)2CH2Fe2(CO)5]2[μ-IMes(CH2)3IMes] (5, IMes = 1-(mesityl)imidazol-2-ylidene) could be prepared by reactions of parent compound B with the mono-NHC ligand-containing imidazolium salt [IMes(CH2)3IMes] · HBr and parent compound [(μ-SCH2)2CH2]Fe2(CO)6 (D) with di-NHC ligand IMes(CH2)3IMes (both NHC ligands were generated in situ from reaction of n-BuLi with imidazolium salt [IMesIMes(CH2)3IMes] · 2HBr), respectively. The imidazolium salt [IMes(CH2)3IMes] · 2HBr was prepared by reaction of 1-(mesityl)imidazole with Br(CH2)3Br. All the new model compounds 1-5 and imidazolium salt [IMes(CH2)3IMes] · 2HBr were fully characterized by elemental analysis, spectroscopy, and X-ray crystallography. On the basis of electrochemical studies of 1 and 2, compound 2 was found to be a catalyst for proton reduction to hydrogen. In addition, an EECC mechanism for this electrocatalytic reaction is preliminarily suggested.  相似文献   

10.
程明伦  张雄飞  朱勇  王梅 《催化学报》2021,42(2):310-319
利用基于非贵金属的分子催化剂通过光驱动催化CO2还原生成CO是将太阳能储存为化学能和缓解CO2温室效应的有效途径之一,具有重要的科学意义和潜在的应用前景.已报道的非贵金属分子催化剂,大多数对于光驱动CO2还原表现出缓慢的催化反应速率和/或对CO产物的低选择性,反应常常伴随着质子还原产氢反应,只有很少几种非贵金属分子催化剂对光催化CO2还原生成CO表现出高催化反应速率(>100 h?1)和高选择性.研究表明,双核过渡金属配合物由于分子中邻近的两个金属中心的协同催化作用,对于CO2还原生成CO的催化活性明显高于相应的单核配合物.因此,具有两个邻近的金属离子的非贵金属双核配合物有望作为CO2选择性还原的高效分子催化剂.我们最近的研究发现,具有刚性、共轭亚苯基二硫桥结构的[FeFe]-氢化酶模拟物[(μ-bdt)Fe2(CO)6](1,bdt=苯-1,2-二巯基)能够高活性、高选择性地光化学还原CO2至CO,而与其类似的模拟物[(μ-edt)Fe2(CO)6](2,edt=乙烷-1,2-巯基)则不具有光催化还原CO2活性,表明铁铁氢化酶模拟物中硫-硫桥的结构是影响模拟物的催化性能的重要结构因素之一.可见光照射1/[Ru(bpy)3]2+/BIH(BIH=1,3-二甲基-2-苯基-2,3-二氢-1H-苯并[d]-咪唑)体系4.5 h,1催化生成CO的循环数(TON)为710,在初始1 h的转化率(TOF)为7.12 min^-1,CO的选择性达到97%,内量子效率为2.8%.有趣的是,向体系中加入TEOA时可以调节1的催化选择性,光化学反应能够在CO2还原产生CO和质子还原产生H2之间进行切换.此外,采用稳态荧光和瞬态吸收光谱研究了光催化体系中的电子转移,提出可能的光催化反应机理.该研究结果揭示了刚性硫-硫桥结构的氢化酶模拟物对光化学CO2还原至CO的特殊催化活性,拓展了铁铁氢化酶模拟物的催化多功能性.  相似文献   

11.
The reaction of [Rh(CO)2Cl]2 with 0.5 mol equivalent of the ligands [P(X)(CH2-CH2P(X)Ph2)3](PP3X4) {where X = O(a), S(b) and Se(c)} affords tetranuclear complexes of the type [Rh4(CO)8Cl4(PP3X4)] (1a-1c). The complexes 1a-1c have been characterized by elemental analyses, mass spectrometry, IR and multinuclear NMR spectroscopy, and the ligands b and c are structurally determined by single crystal X-ray diffraction. 1a-1c undergo oxidative addition (OA) reactions with CH3I to generate Rh(III) oxidised products. Kinetic data for the reaction of 1a and 1b with excess CH3I indicate a pseudo first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester show a higher Turn Over Frequency (TOF = 1349-1748 h−1) compared to the well-known species [Rh(CO)2I2] (TOF = 1000 h−1) under the similar experimental conditions. However, 1b and 1c exhibit lower TOF than 1a, which may be due to the desulfurization and deselinization of the ligands in the respective complexes under the reaction conditions.  相似文献   

12.
13.
The diiron complex [Fe2{μ-к1(O):η1(C):η3(C)-C(N(Me)(Xyl))C(H)C(Me)C(O)OMe}(μ-CO)(Cp)2] (2) has been obtained from the diiron bridging vinyliminium [Fe2{μ-η13-C(Me)C(H)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (1; Xyl = 2,5-C6H3Me2) upon treatment with NaH in the presence of CH2CCMe2, followed by chromatography on alumina with MeOH as eluent. The reaction consists in the incorporation of a methylcarboxylate unit, assembled from CO and MeO, into the bridging vinyliminium ligand. The resulting complex 2 exhibits a C4 fragment bridging the two iron centres through the carbonyl oxygen atom and the allylidene moiety.The X-ray molecular structure of 2 has been determined.  相似文献   

14.
《中国化学快报》2020,31(9):2483-2486
Structural and functional biomimicking of the active site of [NiFe]-hydrogenases can provide helpful hints for designing bioinspired catalysts to replace the expensive noble metal catalysts for H2 generation and uptake. Treatment of dianion [Ni(phma)]2− [H4phma = N,N'-1,2-phenylenebis(2-mercaptoacetamide)] with [NiCl2(dppp)] (dppp = bis(diphenylphosphino)propane) yielded a dinickel product [Ni(phma)(μ-S,S')Ni(dppp)] (1) as the model complex relevant to the active site of [NiFe]-H2ases. The structure of complex 1 has been characterized by single-crystal X-ray analysis. From cyclic voltammetry and controlled potential electrolysis studies, complex 1 was found to be a moderate electrocatalyst for the H2-evoluting reaction using ClCH2COOH as the proton source.  相似文献   

15.
氢化酶仿生化学是当前有机金属化学领域研究的前沿课题,其主要内容为针对氢化酶的活性中心结构和功能进行化学模拟研究.自然界中已经发现的氢化酶有三种,其中[NiFe]氢化酶、[FeFe]氢化酶研究较多.单铁氢化酶发现于1990年,是产甲烷杆菌在厌氧和镍缺乏的条件下合成的.区别于其他两种氢化酶,其活性中心不含Fe-S簇,且仅含有一个Fe原子,并且仅能在底物存在的情况下,催化异裂氢分子并选择性还原特定底物,为产甲烷杆菌代谢提供能量.研究单铁氢化酶的结构和功能,模拟其活化氢、利用氢的过程,对于探索清洁能源的利用和开发新的非贵金属催化剂具有重要意义.本文以单铁氢化酶(Hmd)结构和功能模拟为导向,针对单铁氢化酶一级配位结构,设计合成了两个新模型化合物.通过IR, NMR, X射线单晶衍射等手段表征分析了模型化合物的性质并确认其结构.探索了其质子化反应特性、电催化还原质子制氢的特性.为了进一步模拟Hmd催化裂解氢气、完成氢转移的功能,以所合成模型物为催化剂实现了在常温常压下,以乙醇作为质子源的催化转移氢化过程.新单铁模型配合物Fe(CO)2PR3(NN)(R = Cy (3), Ph (4), NN,邻苯二胺二价阴离子配体)由NN二齿配体与前体化合物Fe(CO)3I2PR3进行配体取代反应合成.模型化合物活性中心为一个二价铁原子,拥有两个处于cis-位置的羰基配体,一个邻苯二胺双齿配体(两个氮原子进行配位)以及一个有机膦配体.通过红外光谱表征所合成的具有不饱和五配位结构化合物的光谱性质,可以得到配合物Fe(CO)2PCy3(NN)的羰基红外特征谱峰为1974,1919 cm–1,配合物Fe(CO)2PPh3(NN)的红外特征谱峰在1985和1929 cm–1处.通过单晶X射线衍射表征确认了两个化合物结构,并获取晶体学数据.经研究发现, Fe(CO)2PR3(NN)能够发生酸碱调控下可逆的质子化/脱质子化过程.基于红外光谱和密度泛函理论计算推断邻苯二胺阴离子配体可以作为内部碱基.在酸性条件下, Fe(CO)2PR3(NN)分子内部碱基氮原子通过质子化反应结合一个质子,生成Fe(CO)2PR3(NN)·H+.加入碱之后,重新生成起始化合物Fe(CO)2PR3(NN).表明N原子作为内部碱基,具有结合和转移质子的能力.该性质与Hmd中半胱氨酸硫配体具有一致性.通过循环伏安曲线研究了配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)的电化学性质.其中配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)均具有两个不可逆的还原峰和氧化峰.在电化学制氢研究中,配合物Fe(CO)2PPh3(NN)的还原峰电流随着乙酸的加入增幅较大,展现出较强的催化质子还原的性质.通过与其他单铁模型配合物对比,可以推断第一个还原峰归属为配合物由FeI转化为FeI,第二个可逆还原峰归属为配合物由FeI转化为Fe0.同时,配合物Fe(CO)2PPh3(NN)第一个还原峰向高电位移动,该现象与双铁模型化合物的电化学性质较为一致.进一步研究发现,模型化合物具有催化转移氢化的活性.在常温下,乙醇溶剂中, Fe(CO)2PCy3(NN)能够催化对苯醌还原转化为对苯二酚,其中对苯醌的转化率达到89%,对苯二酚的产率达到40%.结合实验数据以及文献资料分析,认为乙醇在催化氢化中可以作为质子源,并且提出了催化转移氢化反应过程的机理.认为催化氢化过程中形成了-Fe-H-C-O-H-N-六元环,通过分子间相互作用完成了氢原子转移过程.该研究结论对单铁氢化酶活性中心模型化合物在催化氢化反应中的应用具有一定的参考价值.  相似文献   

16.
This article reviews published literature on the electrochemical reduction and oxidation of complexes containing the Fe2S2 core characteristic of the active site of [FeFe]-hydrogenases. Correlations between reduction and oxidation potentials and molecular structure are developed and presented. In cases where the complexes have been studied with regard to their ability to catalyze the reduction of acids to give dihydrogen, the overpotentials for such catalyzed reduction are presented and an attempt is made to estimate, at least qualitatively, the efficiency of such catalysis.  相似文献   

17.
The fluorocarbon soluble, binuclear ruthenium(I) complexes [Ru(μ-O2CMe)(CO)2LF]2, where LF is the perfluoroalkyl substituted tertiary phosphine, P(C6H4-4-CH2CH2(CF2)7CF3)3, or P(CH2CH2(CF2)5CF3)3, were synthesized and partition coefficients for the complexes in fluorocarbon/hydrocarbon biphases were determined. Catalytic hydrogenation of acetophenone to 1-phenylethanol in benzotrifluoride at 105 °C occured in the presence of either [Ru(μ-O2CMe)(CO)2P(C6H4-4-CH2CH2(CF2)7CF3)3]2 (1) or [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 (2). The X-ray crystal structure of [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 was determined. The compound exhibited discrete regions of fluorous and non-fluorous packing.  相似文献   

18.
Manganese(Ⅲ) meso-tetraphenylporphyrin acetate [Mn(TPP)OAc] served as an effective catalyst for the oxidative decarboxylation of carboxylic acids with (diacetoxyiodo)benzene [PhI(OAc)2] in CH2CI2-H2O(95:5, volume ratio). The aryl substituted acetic acids are more reactive than the less electron rich linear carboxylic acids in the presence of catalyst Mn(TPP)OAc. In the former case, the formation of carbonyl products was complete within just a few minutes with 〉97% selectivities, and no further oxidation of the produced aldehydes was achieved under these catalytic conditions. This method provides a benign procedure owing to the utilization of low toxic(diacetoxyiodo) benzene, biologically relevant manganese porphyrins, and carboxylic acids.  相似文献   

19.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

20.
KHFe(CO)4 reacts with tris(amino)phosphines by substitution at phosphorus leading to [bis(amino)phosphine]tetracarbonyliron complexes [(R1R2N)2PH]Fe(CO)4. The X-ray structure has been determined for R1=R2=Ph. Deprotonation of these complexes with KH affords stable potassium phosphidotetracarbonylferrates which can be alkylated or acylated at phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号