首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
王世英  林上为 《数学研究》2006,39(4):335-344
限制边连通度作为边连通度的推广,是计算机互连网络可靠性的一个重要度量.Superλ-′是比限制边连通度更精确的一个网络可靠性指标.一个图是Superλ-′的,如果它的任一最小限制边割都孤立一条有最小边度的边.本文考虑一类重要的网络模型-无向K autz图UK(d,n)的限制边连通度λ,′证明了当d 3,n 2时,λ(′UK(d,n))=4d-4,并进一步指出此时的UK(d,n)是Superλ-′的.  相似文献   

2.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

3.
1.IntroductionAgraphG=(V,E)meansafinitegraphwithoutloopsandmultipleedgeswithvertexsetVandedgesetE,theclassicaledgeconnectivityA(G)ofGistheminimumsizeofasetUofedgessuchthatG--Uisdisconnected,andsuchasetUiscalledaoutsetofG.Notethatintheabovedefinition,absolutelynoconditionsorrestrictionsareimposedeitheronthecomponelltsofG--UoronthesetU.ThusitwouldseemnaturaltogeneralizetheconceptofedgeconnectivitybyintroducingsomeconditionsorrestrictionsonthecomponentsofG--Uand/orthesetU.Asageneralizatio…  相似文献   

4.
Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero Z 3-flow and Jaeger et al. [Group connectivity of graphs–a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182] further conjectured that every 5-edge-connected graph is Z 3-connected. These two conjectures are in general open and few results are known so far. A weaker version of Tutte’s conjecture states that every 4-edge-connected graph with each edge contained in a circuit of length at most 3 admits a nowhere-zero Z 3-flow. Devos proposed a stronger version problem by asking if every such graph is Z 3-connected. In this paper, we first answer this later question in negative and get an infinite family of such graphs which are not Z 3-connected. Moreover, motivated by these graphs, we prove that every 6-edge-connected graph whose edge set is an edge disjoint union of circuits of length at most 3 is Z 3-connected. It is a partial result to Jaeger’s Z 3-connectivity conjecture. Received: May 23, 2006. Final version received: January 13, 2008  相似文献   

5.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

6.
本文给出了衡量模糊连通性的三个工量:模糊连通度,模糊边连通度与模糊核度及其相关的性质。与普通图连通性的分析相比较,由于考虑了模糊性,这三个量能更好,更深入地刻划出不同的图在连通性方面的微妙差异。  相似文献   

7.
An edge cut of a connected graph is m-restricted if its removal leaves every component having order at least m. The size of minimum m-restricted edge cuts of a graph G is called its m-restricted edge connectivity. It is known that when m≤4, networks with maximal m-restricted edge connectivity are most locally reliable. The undirected binary Kautz graph UK(2,n) is proved to be maximal 2- and 3-restricted edge connected when n≥3 in this work. Furthermore, every minimum 2-restricted edge cut disconnects this graph into two components, one of which being an isolated edge.  相似文献   

8.
Zhao Zhang 《Discrete Mathematics》2008,308(20):4560-4569
An edge set S of a connected graph G is a k-extra edge cut, if G-S is no longer connected, and each component of G-S has at least k vertices. The cardinality of a minimum k-extra edge cut, denoted by λk(G), is the k-extra edge connectivity of G. The kth isoperimetric edge connectivity γk(G) is defined as , where ω(U) is the number of edges with one end in U and the other end in . Write βk(G)=min{ω(U):UV(G),|U|=k}. A graph G with is said to be γk-optimal.In this paper, we first prove that λk(G)=γk(G) if G is a regular graph with girth g?k/2. Then, we show that except for K3,3 and K4, a 3-regular vertex/edge transitive graph is γk-optimal if and only if its girth is at least k+2. Finally, we prove that a connected d-regular edge-transitive graph with d?6ek(G)/k is γk-optimal, where ek(G) is the maximum number of edges in a subgraph of G with order k.  相似文献   

9.
H是连通超图。若超图H的边连通度等于其最小度,则称H是最大边连通的。若超图H的每个最小边割总是由关联于某个最小度顶点的边集所构成,则称H是super-边连通的。首先给出一致线性超图是最大边连通超图的度序列条件。其次,给出一致线性超图是super-边连通超图的度条件。这些结果分别推广了Dankelmann和Volkmann(1997)以及Hellwig和Volkmann(2005)在图上的相关结论。  相似文献   

10.
Using the well‐known Theorem of Turán, we present in this paper degree sequence conditions for the equality of edge‐connectivity and minimum degree, depending on the clique number of a graph. Different examples will show that these conditions are best possible and independent of all the known results in this area. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 234–245, 2003  相似文献   

11.
We characterize graphs of large enough order or large enough minimum degree which contain edge cuts whose deletion results in a graph with a specified number of large components. This generalizes and extends recent results due to Ou [Jianping Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005), 365-371] and Zhang and Yuan [Z. Zhang, J. Yuan, A proof of an inequality concerning k-restricted edge connectivity, Discrete Math. 304 (2005), 128-134].  相似文献   

12.
Let A(n, k, t) denote the smallest integer e for which every k‐connected graph on n vertices can be made (k + t)‐connected by adding e new edges. We determine A(n, k, t) for all values of n, k, and t in the case of (directed and undirected) edge‐connectivity and also for directed vertex‐connectivity. For undirected vertex‐connectivity we determine A(n, k, 1) for all values of n and k. We also describe the graphs that attain the extremal values. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 179–193, 1999  相似文献   

13.
Given a hypergraph, a partition of its vertex set, and a nonnegative integer k, find a minimum number of graph edges to be added between different members of the partition in order to make the hypergraph k‐edge‐connected. This problem is a common generalization of the following two problems: edge‐connectivity augmentation of graphs with partition constraints (J. Bang‐Jensen, H. Gabow, T. Jordán, Z. Szigeti, SIAM J Discrete Math 12(2) (1999), 160–207) and edge‐connectivity augmentation of hypergraphs by adding graph edges (J. Bang‐Jensen, B. Jackson, Math Program 84(3) (1999), 467–481). We give a min–max theorem for this problem, which implies the corresponding results on the above‐mentioned problems, and our proof yields a polynomial algorithm to find the desired set of edges.  相似文献   

14.
简述了极大边连通图和超边连通图;限制边连通度、极大限制边连通图和超限制边连通图的研究进展.  相似文献   

15.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

16.
We provide some exact formulas for the projective dimension and regularity of edge ideals associated to some vertex-weighted oriented cyclic graphs with a common vertex or edge.These formulas are functions in the weight of the vertices,and the numbers of edges and cycles.Some examples show that these formulas are related to direction selection and the assumption that w(x)≥2 for any vertex x cannot be dropped.  相似文献   

17.
We introduce the notion of the asymptotic connectivity of a graph by generalizing to infinite graphs average connectivity as defined by Beineke, Oellermann, and Pippert. Combinatorial and geometric properties of asymptotic connectivity are then explored. In particular, we compute the asymptotic connectivity of a number of planar graphs in order to determine the extent to which this measure correlates with the large-scale geometry of the graph.  相似文献   

18.
围长为3的点可迁图的3限制边连通度   总被引:1,自引:0,他引:1  
设G是阶至少为6的k正则连通图.如果G的围长等于3,那么它的3限制边连通度 λ3(G)≤3k-6.当G是3或者4正则连通点可迁图时等号成立,除非G是4正则图并且 λ3(G)=4.进一步,λ3(G)=4的充分必要条件是图G含有子图K4.  相似文献   

19.
设G=(V,E)是一个连通图.称一个边集合S■E是一个k限制边割,如果G-S的每个连通分支至少有k个顶点.称G的所有k限制边割中所含边数最少的边割的基数为G的k限制边连通度,记为λ_k(G).定义ξ_k(G)=min{[X,■]:|X|=k,G[X]连通,■=V(G)\X}.称图G是极大k限制边连通的,如果λ_k(G)=ξ_k(G).本文给出了围长为g>6的极大3限制边连通二部图的充分条件.  相似文献   

20.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号