首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hamiltonian index of a graph G is defined as
h(G)=min{m:Lm(G) is Hamiltonian}.  相似文献   

2.
Let G be a graph. For u,vV(G) with distG(u,v)=2, denote JG(u,v)={wNG(u)∩NG(v)|NG(w)NG(u)NG(v){u,v}}. A graph G is called quasi claw-free if JG(u,v)≠ for any u,vV(G) with distG(u,v)=2. In 1986, Thomassen conjectured that every 4-connected line graph is hamiltonian. In this paper we show that every 4-connected line graph of a quasi claw-free graph is hamiltonian connected.  相似文献   

3.
In this paper, we show that if G is a 3‐edge‐connected graph with and , then either G has an Eulerian subgraph H such that , or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S. If G is a 3‐edge‐connected planar graph, then for any , G has an Eulerian subgraph H such that . As an application, we obtain a new result on Hamiltonian line graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 308–319, 2003  相似文献   

4.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

5.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

6.
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

7.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   

8.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if the set of the vertices of all the paths in C(u,v) contains all the vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to k*-connected graphs.  相似文献   

9.
A graph G is collapsible if for every even subset XV(G), G has a subgraph Γ such that GE(Γ) is connected and the set of odd-degree vertices of Γ is X. A graph obtained by contracting all the non-trivial collapsible subgraphs of G is called the reduction of G. In this paper, we characterize graphs of diameter two in terms of collapsible subgraphs and investigate the relationship between the line graph of the reduction and the reduction of the line graph. Our results extend former results in [H.-J. Lai, Reduced graph of diameter two, J. Graph Theory 14 (1) (1990) 77-87], and in [P.A. Catlin, Iqblunnisa, T.N. Janakiraman, N. Srinivasan, Hamilton cycles and closed trails in iterated line graphs, J. Graph Theory 14 (1990) 347-364].  相似文献   

10.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

11.
Let cl(G) denote Ryjá?ek's closure of a claw‐free graph G. In this article, we prove the following result. Let G be a 4‐connected claw‐free graph. Assume that G[NG(T)] is cyclically 3‐connected if T is a maximal K3 in G which is also maximal in cl(G). Then G is hamiltonian. This result is a common generalization of Kaiser et al.'s theorem [J Graph Theory 48(4) (2005), 267–276] and Pfender's theorem [J Graph Theory 49(4) (2005), 262–272]. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
随机偏好连接图的中心极限定理   总被引:1,自引:0,他引:1       下载免费PDF全文
我们研究了一类具有随机顶点和边的随机连接图模型, 其中顶点的随机性由一个Poisson 点过程所决定, 边的随机性由一个概率连接函数所决定. 我们得到了带偏好的随机连接图模型的关于所有随机边的长度和的一个中心极限定理.  相似文献   

13.
By a signpost system we mean an ordered pair (W, P), where W is a finite nonempty set, P W × W × W and the following statements hold: if (u, v, w) P, then (v, u, u) P and (v, u, w) P, for all u, v, w W; if u v; then there exists r W such that (u, r, v) P, for all u, v W. We say that a signpost system (W, P) is smooth if the folowing statement holds for all u, v, x, y, z W: if (u, v, x), (u, v, z), (x, y, z) P, then (u, v, y) P. We say thay a signpost system (W, P) is simple if the following statement holds for all u, v, x, y W: if (u, v, x), (x, y, v) P, then (u, v, y), (x, y, u) P.By the underlying graph of a signpost system (W, P) we mean the graph G with V(G) = W and such that the following statement holds for all distinct u, v W: u and v are adjacent in G if and only if (u, v, v) P. The main result of this paper is as follows: If G is a graph, then the following three statements are equivalent: G is connected; G is the underlying graph of a simple smooth signpost system; G is the underlying graph of a smooth signpost system.Research was supported by Grant Agency of the Czech Republic, grant No. 401/01/0218.  相似文献   

14.
A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian path. We prove that . We also establish several results related to special classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We prove that . Let h2(n) denote the largest number such that when we remove an arbitrary star with at most h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show that h2(n)=⌈n/2⌉-1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph will have a noncrossing Hamiltonian path.  相似文献   

15.
16.
The problem is considered under which conditions a 4-connected planar or projective planar graph has a Hamiltonian cycle containing certain prescribed edges and missing certain forbidden edges. The results are applied to obtain novel lower bounds on the number of distinct Hamiltonian cycles that must be present in a 5-connected graph that is embedded into the plane or into the projective plane with face-width at least five. Especially, we show that every 5-connected plane or projective plane triangulation on n vertices with no non-contractible cyles of length less than five contains at least distinct Hamiltonian cycles. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 81–96, 1999  相似文献   

17.
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly-convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearly-convex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. We also show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs.  相似文献   

18.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

19.
Brualdi and Shanny [R.A. Brualdi, R.F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981) 307-314], Clark [L. Clark, On hamitonian line graphs, J. Graph Theory 8 (1984) 303-307] and Veldman [H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229-239] gave minimum degree conditions of a line graph guaranteeing the line graph to be hamiltonian. In this paper, we investigate the similar conditions guaranteeing a line graph to be traceable. In particular, we show the following result: let G be a simple graph of order n and L(G) its line graph. If n is sufficiently large and, either ; or and G is almost bridgeless, then L(G) is traceable. As a byproduct, we also show that every 2-edge-connected triangle-free simple graph with order at most 9 has a spanning trail. These results are all best possible.  相似文献   

20.
设G是一个无向简单图,A(G)为G的邻接矩阵.用G的补图的特征值给出G包含哈密尔顿路、哈密尔顿圈以及哈密尔顿连通图的充分条件:其次用二部图的拟补图的特征值给出二部图包含哈密尔顿圈的充分条件.这些结果改进了一些已知的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号