首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae.  相似文献   

2.
We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G.  相似文献   

3.
For a simple graph G, let denote the complement of G relative to the complete graph and let PG(x)=det(xI-A(G)) where A(G) denotes the adjacency matrix of G. The complete product GH of two simple graphs G and H is the graph obtained from G and H by joining every vertex of G to every vertex of H. In [2]PGH(x) is represented in terms of PG, , PH and . In this paper we extend the notion of complete product of simple graphs to that of generalized complete product of matrices and obtain their characteristic polynomials.  相似文献   

4.
Let G be a graph with n vertices and m edges. Let λ1λ2, … , λn be the eigenvalues of the adjacency matrix of G, and let μ1μ2, … , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity is the energy of the graph G. We now define and investigate the Laplacian energy as . There is a great deal of analogy between the properties of E(G) and LE(G), but also some significant differences.  相似文献   

5.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

6.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

7.
In this paper we characterize the unique graph whose least eigenvalue attains the minimum among all connected graphs of fixed order and given number of cut vertices, and then obtain a lower bound for the least eigenvalue of a connected graph in terms of the number of cut vertices. During the discussion we also get some results for the spectral radius of a connected bipartite graph and its upper bound.  相似文献   

8.
In this paper, we obtain the following upper bound for the largest Laplacian graph eigenvalue λ(G):
  相似文献   

9.
In this paper we find spectral bounds (Laplacian matrix) for the vertex and the edge betweenness of a graph. We also relate the edge betweenness with the isoperimetric number and the edge forwarding and edge expansion indices of the graph allowing a new upper bound on its diameter. The results are of interest as they can be used in the study of communication properties of real networks, in particular for dynamical processes taking place on them (broadcasting, network synchronization, virus spreading, etc.).  相似文献   

10.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.  相似文献   

11.
In this paper we characterize the unique graph whose least eigenvalue attains the minimum among all graphs of a fixed order and a given vertex (edge) independence number or vertex (edge) cover number, and get some bounds for the vertex (edge) independence number, vertex (edge) cover number of a graph in terms of the least eigenvalue of the graph.  相似文献   

12.
We consider the general problem of determining the maximum possible multiplicity of an eigenvalue in a Hermitian matrix whose graph contains exactly one cycle. For some cases we express that maximum multiplicity in terms of certain parameters associated with the graph.  相似文献   

13.
In this note, we combine a number of recent ideas to give new results on the graph complement conjecture for minimum semidefinite rank.  相似文献   

14.
An upper bound is given on the number of acyclic orientations of a graph, in terms of the spectrum of its Laplacian. It is shown that this improves upon the previously known bound, which depended on the degree sequence of the graph. Estimates on the new bound are provided.A lower bound on the number of acyclic orientations of a graph is given, with the help of the probabilistic method. This argument can take advantage of structural properties of the graph: it is shown how to obtain stronger bounds for small-degree graphs of girth at least five, than are possible for arbitrary graphs. A simpler proof of the known lower bound for arbitrary graphs is also obtained.Both the upper and lower bounds are shown to extend to the general problem of bounding the chromatic polynomial from above and below along the negative real axis.Partially supported by the NSF under grant CCR-9404113. Most of this research was done while the author was at the Massachusetts Institute of Technology, and was supported by the Defense Advanced Research Projects Agency under Contracts N00014-92-J-1799 and N00014-91-J-1698, the Air Force under Contract F49620-92-J-0125, and the Army under Contract DAAL-03-86-K-0171.Supported by an ONR graduate fellowship, grants NSF 8912586 CCR and AFOSR 89-0271, and an NSF postdoctoral fellowship.  相似文献   

15.
The spectral radius of a (directed) graph is the largest eigenvalue of adjacency matrix of the (directed) graph. We give the relation on the characteristic polynomials of a directed graph and its line graph, and obtain sharp bounds on the spectral radius of directed graphs. We also give the relation on the spectral radii of a graph and its line graph. As a consequence, the spectral radius of a connected graph does not exceed that of its line graph except that the graph is a path.  相似文献   

16.
The complexity of a graph can be obtained as a derivative of a variation of the zeta function [S. Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser. B 74 (1998) 408-410] or a partial derivative of its generalized characteristic polynomial evaluated at a point [D. Kim, H.K. Kim, J. Lee, Generalized characteristic polynomials of graph bundles, Linear Algebra Appl. 429 (4) (2008) 688-697]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [H. Mizuno, I. Sato, On the weighted complexity of a regular covering of a graph, J. Combin. Theory Ser. B 89 (2003) 17-26]. In this paper, we consider the determinant function of two variables and discover a condition that the weighted complexity of a weighted graph is a partial derivative of the determinant function evaluated at a point. Consequently, we simply obtain the previous results and disclose a new formula for the complexity from a variation of the Bartholdi zeta function. We also consider a new weighted complexity, for which the weights of spanning trees are taken as the sum of weights of edges in the tree, and find a similar formula for this new weighted complexity. As an application, we compute the weighted complexities of the product of the complete graphs.  相似文献   

17.
Letg be a non-degenerate innerproduct of signature (p,q) onR m . LetGr r,s (g) be the Grassmanian of planes so the restriction of g to is non-degenerate and has signature (r, s). IfR is an algebraic curvature tensor onR m , we define a generalized Jacobi operator onGr r,s (g) and study when the characteristic polynomial of this operator is constant.Dedicated to Professor Helmut Karzel on his 70th birthdayResearch partially supported by the NSF (USA).Research partially supported by the NFSI (Bulgaria).  相似文献   

18.
19.
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.  相似文献   

20.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号