首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A mid-infrared supercontinuum (SC) is generated in ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF...) fluoride fibers from amplified nanosecond laser diode pulses with a continuous spectrum from approximately 0.8 microm to beyond 4.5 microm. The SC has an average power of approximately 23 mW, a pump-to-SC power conversion efficiency exceeding 50%, and a spectral power density of approximately -20 dBm/nm over a large fraction of the spectrum. The SC generation is initiated by the breakup of nanosecond laser diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened primarily through fiber nonlinearities in approximately 2-7 m lengths of ZBLAN fiber. The SC long-wavelength edge is consistent with the intrinsic ZBLAN material absorption.  相似文献   

2.
Fotiadi AA  Mégret P 《Optics letters》2006,31(11):1621-1623
Brillouin mirrors based on a single-mode optical fiber provide the simplest, completely passive, and most universal way to produce nanosecond pulses with extensive wavelength tunability. We propose an all-fiber solution, where a passively Q-switched Er-doped Briilouin fiber laser pumped by a low-power laser diode produces pulses with a peak/average power contrast of 500 W/25 mW and, in association with a conventional dispersion-shifted fiber employed as an extracavity nonlinear medium, causes the generation of a nanosecond supercontinuum extending from 900 to over 1800 nm. Expanding evolution of the spectrum kicked off by the multicascade Brillouin process is reported.  相似文献   

3.
A novel compact supercontinuum (SC) source using the single mode photonic crystal fibers (PCF) pumped with an all fiber MOPA fiber laser is demonstrated experimentally. A bandwidth of 700 nm is achieved by operating the pumping fiber laser at a wavelength of 1064 nm, pulse duration of 10 ns, repetition rate of 50 kHz and peak power of 1 kW. The SC generation is initiated through modulation instability (MI) which breakups the nanosecond pump pulses into picosecond or femtosecond pulses, and further broadened through nonlinear effects of PCF.  相似文献   

4.
Yu CX  Haus HA  Ippen EP  Wong WS  Sysoliatin A 《Optics letters》2000,25(19):1418-1420
We report direct generation of <500-fs pulses at a 1-GHz rate from a self-starting passively mode-locked fiber laser by regeneratively synchronizing the pulses with a phase modulator. The pulses are amplified and passed through a dispersion-decreasing fiber and a normal-dispersion supercontinuum fiber. The resulting continuum is wider than 350 nm.  相似文献   

5.
Duan  L. N.  Liu  X. M.  Wang  L. R.  Mao  D.  Wang  G. X. 《Laser Physics》2011,21(10):1813-1819
We have experimentally investigated the supercontinuum (SC) generation based on high-energy Gaussian-spectrum pulses emitted from an erbium-doped fiber laser with large-anomalous dispersion. The pulses exhibit rectangular shape in temporal domain with the pulse duration of about 16 ns. When the amplified pulses propagate through 10-km single-mode fiber, the SC ranged from 1530 to 1750 nm arises from the stimulated-Raman-scattering effect and the pulses break up due to the modulation instability. Comparatively, when the amplified pulses propagate through a segment of highly-nonlinear zero-dispersion-flattened photonic crystal fiber, super-broad SC beyond the range of 1300–1750 nm is generated due to strong four-wave mixing effect, whereas the pulses almost maintain their shapes.  相似文献   

6.
Ritari T  Genty G  Ludvigsen H 《Optics letters》2005,30(24):3380-3382
We exploit both the high nonlinearity and the holey structure of microstructured fibers to combine a broad-band light source and a gas cell in a single microstructured fiber. A broadband supercontinuum is formed by launching nanosecond pulses from a compact, Q-switched Nd:YAG laser into a microstructured fiber filled with acetylene. This continuum is self-referenced to the acetylene lines in the 1500 nm region. The performance of different index-guiding narrow-core microstructured fibers as nonlinear and host media is evaluated. The concept offers many possibilities and can be applied to various gases absorbing at different wavelengths.  相似文献   

7.
Ycas G  Osterman S  Diddams SA 《Optics letters》2012,37(12):2199-2201
We present a multibranch laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 THz of bandwidth, from 660 nm to 2100 nm. Light from a mode-locked Er:fiber laser is amplified and then broadened in highly-nonlinear fiber to produce substantial power at ~1050 nm. This light is subsequently amplified in Yb:fiber to produce 1.2 nJ, 73 fs pulses at 1040 nm. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1040 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.  相似文献   

8.
 报道了一种基于低非线性系数光子晶体光纤的全光纤高效率超连续谱产生系统。将光纤锁模激光器输出的脉宽5 ps、重复频率20 MHz、平均功率50 mW的脉冲,输入到15 μm的大模场光纤中进行放大,通过与两级芯径较小的短光纤模场匹配缩小输出的模场直径后,输入到20 m低非线性系数的光子晶体光纤,获得的超连续谱波长覆盖范围宽于650~1 700 nm。输入光子晶体光纤的泵浦光功率为740 mW,输出超连续光功率为670 mW,转换效率大于90%。实验研究了超连续光谱展宽的过程,从理论上进行了分析解释。  相似文献   

9.
We demonstrate an ultrashort all-fiber-integrated chirped-pulse amplification system yielding 1-ps pulses with 20 kW of peak power. 40-ps initial pulses generated by an externally modulated laser diode are chirped by self-phase modulation in a conventional fiber, amplified, and compressed in 110 m of air-core photonic bandgap fiber. The compressed pulses are frequency doubled in a periodically poled KTP crystal with up to 48% efficiency and applied to supercontinuum generation in a holey fiber, resulting in a high-power uniform continuum that stretches from 430 to 1450 nm.  相似文献   

10.
Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carded out. The complex Ginzburg-Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work.  相似文献   

11.
Microjoule supercontinuum generation is demonstrated using a large-mode-area photonic-crystal fiber (PCF) pumped by an amplified stretched-pulse output of a mode-locked Cr:forsterite laser. A PCF with a mode area of 380 μm2 is employed to transform 300-fs Cr:forsterite laser pulses with a peak-power of a few megawatts into a supercontinuum radiation with a spectrum spanning from 700 to 1800 nm and a total energy of 1.15 μJ.  相似文献   

12.
We report supercontinuum generation extending to 300 nm in the UV from a pure-silica holey fiber. The broad spectrum was obtained by launching ultra-short pulses (150 fs, 10 nJ at 820 nm) from an amplified Ti:sapphire laser. The extension of holey-fiber-based supercontinuum generation into the UV should prove to be of immediate application in spectroscopy. By slightly detuning the launch conditions we excited a higher order spatial mode, which produced a narrower supercontinuum, but with enhanced conversion efficiency at a series of blue/UV peaks around 360 nm. We present numerical simulations, which suggest that differences in the dispersion profiles between the modes are an important factor in explaining this enhancement. In a related experiment, using the same laser source and fiber, we demonstrate a visible supercontinuum from several subsidiary cores, with distinct colours in each core. The subsidiary cores were excited by an appropriate input coupling. Fabrication of a fiber with a range of core sizes (dispersion profiles) for tailored supercontinuum generation can therefore be envisaged for practical applications. PACS 42.72.Bj; 42.79.Nv; 42.81.Dp  相似文献   

13.
We study the effect of stimulated Raman scattering on four-wave mixing sidebands generated by pumping in the normal dispersion regime of a photonic crystal fiber. Q-switch nanosecond pulses at 1064 nm are used to generate signal and idler wavelengths by degenerate four-wave mixing. These three waves generate their own Raman Stokes orders, leading to a broadband supercontinuum.  相似文献   

14.
We report femtosecond pulse generation and chirped pulse amplification in Tm:fiber. A mode-locked oscillator operating in the soliton regime produced 800 fs pulses with 5 nm spectral bandwidth, at 40 pJ pulse energy. This oscillator seeded a pre-amplifier that utilizes a Raman soliton self-frequency shift to produce wavelength tunable pulses with 3 nJ energy, reduced pulse duration of 150 fs, and increased bandwidth of 30 nm. For further amplification, the pulses were stretched up to 160 ps using a chirped Bragg grating (CBG). Stretched pulses were amplified to 85 nJ after compression in single-mode Tm:fiber and recompressed with the CBG as short as 400 fs. Compressed pulses were coupled into a highly nonlinear tellurite fiber to investigate the potential of this ultrashort pulse 2-μm fiber source as a pump for mid-IR supercontinuum generation.  相似文献   

15.
本文利用非线性偏振锁模激光器产生的重复频率50 MHz, 脉宽为1.8 ps的脉冲分别抽运外径均匀和色散渐减两种高非线性光子晶体光纤, 在三阶非线性效应 (自相位调制、交叉相位调制、四波混频和受激拉曼散效应等) 和色散共同作用下得到扩展至蓝光部分的超连续谱. 模拟了光谱在色散渐减光纤和均匀光纤中的展宽过程, 通过对比均匀光纤发现色散渐减光纤在调控色散, 加强拉曼孤子和色散波的群速度匹配条件, 产生超带宽光谱方面具有很大优势. 实验利用20 m长的色散渐减光纤, 得到了406.1至671.8 nm的可见光波段增强的较为平坦的超连续谱. 关键词: 超连续谱 色散渐减光子晶体光纤 群速度匹配 非线性效应  相似文献   

16.
Cruz FC  Stowe MC  Ye J 《Optics letters》2006,31(9):1337-1339
A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources.  相似文献   

17.
The supercontinuum generation has been obtained in short conventional dispersion-shifted fiber using the femtosecond pulses from a passively mode-locked erbium-doped fiber laser. In the experiment, the supercontinuum spectrum of >300 nm has been observed by injecting 70-fs pulses into a several-meter dispersion-shifted fiber. The simulation of the evolution in the fiber shows that spectral broadening arises from soliton dynamics when pumping using femtosecond pulses in the anomalous group velocity dispersion regime of the fiber.  相似文献   

18.
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth–Erbium Doped Fiber (Bi–EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of ?17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.  相似文献   

19.
采用主动锁模光纤激光器输出的重复频率10GHz、脉宽7.97ps的脉冲作为抽运光源,无需压缩后直接抽运4.2km的普通色散位移光纤(DSF).利用色散位移光纤中自相位调制、交叉相位调制等非线性效应的联合作用,获得了20dB带宽达125nm、覆盖整个C波段、L波段和部分S波段的超连续(SC)谱。实验研究了抽运光脉冲峰值功率和抽运波长对超连续谱宽度的影响,结果表明抽运光脉冲峰值功率越高,得到的超连续谱的带宽越宽;通过对抽运波长的优化,可以实现最大程度的超连续展宽;分析了滤波器带宽对脉冲质量的影响;利用0.4nm带宽的可调谐滤波器对从超连续谱中滤出脉冲的特性进行了研究,在超连续谱的不同波长处获得了脉宽为8.90~9.80ps、时间一带宽积为0.44~0.49的稳定的窄光脉冲。  相似文献   

20.
Photonic-crystal fibers are shown to allow efficient spectral transformation of nanosecond laser pulses through parametric four-wave mixing and stimulated Raman scattering. Regimes providing highly efficient transformation of nanosecond laser pulses into white-light broadband radiation (supercontinuum) are identified. A strong parametric coupling between Stokes and anti-Stokes Raman sidebands around the wavelength of zero group-velocity dispersion is shown to increase the bandwidth and to improve the spectral quality of supercontinuum radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号