首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A technique for designing the supersonic annular inlets with isentropic deceleration surfaces is considered. The contour of an isentropic supersonic nozzle constructed by the method of characteristics for an inviscid gas flow with given uniform parameters at the inlet and at the outlet is used as the basic configuration of the inlet. The reversed flow of a viscous gas is computed with the aid of numerical techniques in the contour under consideration and the real operational characteristics of the obtained inlet of a fixed geometry are determined in the range of the conditions of its application. In the process of computations, the minimum cross-sectional sizes are selected, which ensure the inlet start without a detached bow shock at the entrance.  相似文献   

2.
3.
A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the corner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.  相似文献   

4.
We investigate the collision of two oblique dark solitons in the two-dimensional supersonic nonlinear Schrödinger flow past two impenetrable obstacles. We numerically show that this collision is very similar to the dark solitons collision in the one-dimensional case. We observe that it is practically elastic and we measure the shifts of the solitons positions after their interaction.  相似文献   

5.
A two-dimensional inlet of external compression with the increased flow rate factor at high supersonic velocities is constructed by the method of gasdynamic design. Its feature is that a flow with the initial oblique shock wave and the subsequent centered isentropic compression wave is formed over the external compression ramp of the inlet. These waves interact with one another so that a resulting stronger oblique shock wave and a velocity discontinuity arise in front of the entrance to the inlet internal duct. An example of an inlet configuration with the design flow regime corresponding to the Mach number Md = 7 is considered. The characteristics of this inlet were obtained in the range of the free-stream Mach numbers M = 4–7 with the use of a Navier—Stokes code for turbulent flow. They are compared with characteristics of an equivalent conventional shocked inlet. As computations have shown, the inlet with the isentropic compression wave has much higher values of flow rate factor φ at Mach numbers M < Md. So, for example, at M = 4 the value φ ≈ 0.72 for it is by 33 % higher in comparison with φ ≈ 0.54 for the equivalent shocked inlet.  相似文献   

6.
This letter presents a novel application of iterated function system (IFS) based three-dimensional (3D)fractal interpolation to compression elevation data. The parameters of contractive transformations are simplified by a concise fractal iteration form with geometric meaning. A local iteration algorithm is proposed,which can solve the non-separation problem when Collage Theorem is applied to find the appropriate fractal parameters. The elevation data compression is proved experimentally to be effective in reconstruction quality and time-saving.  相似文献   

7.
This paper proposes a new multispectral image data compression algorithm (KLT/WT-3DEZB). The proposed coding strategy consists of three main steps. Firstly, a wavelet transform (WT) is applied to reduce the spatial redundancies. Then, a Karhunen-Loeve transform (KLT) is used to reduce the redundancies in the spectral domain. Finally, a modified SPECK algorithm-three-dimensional embedded zeroblock (3DEZB) algorithm is proposed and used to encode the transformed coefficients. Numerical experiments show that the reconstructed images using the proposed algorithm exhibite a better quality and a higher compression ratio than those obtained by traditional KLT/WT-3DSPIHT, 3DSPIHT, and 3DSPECK algorithms.  相似文献   

8.
A three-dimensional (3D) wavelet coder based on 3D significance tree splitting is proposed for hyperspectral image compression. 3D discrete wavelet transform (DWT) is applied to explore the spatial and spectral correlations. Then the 3D significance tree structure is constructed in 3D wavelet domain, and wavelet coefficients are encoded via 3D significance tree splitting. This proposed algorithm does not need to use ordered lists, moreover it has less complexity and requires lower fixed memory than 3D set partitioning in hierarchical trees (SPIHT) algorithm and 3D set partitioned embedded block (SPECK) algorithm. The numerical experiments on AVIRIS images show that the proposed algorithm outperforms 3D SPECK, and has a minor loss of performance compared with 3D SPIHT. This algorithm is suitable for simple hardware implementation and can be applied to progressive transmission.  相似文献   

9.
In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-dimensional nonlinear Schrödinger flow. In this work we show that single soliton solution can be expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that the system is “close” to integrability provided that the angle between the solitons is small and/or we are in the hypersonic limit.  相似文献   

10.
The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier-Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound.  相似文献   

11.
Moore AJ  Smith J  Lawson NJ 《Optics letters》2005,30(19):2569-2571
Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.  相似文献   

12.
The results of designing and numerical gas-dynamic modeling a supersonic three-dimensional inlet of a new type are considered. A ramp of external compression of this inlet is the V-shaped body forming an initial plane oblique shock wave and a subsequent isentropic compression wave. The inlet incorporates an entrance section of internal compression, where also a plane oblique shock wave and a subsequent isentropic compression wave are formed by a cowl. The designed three-dimensional inlet has small inclination angles of compression surfaces, which ensures its low wave drag. According to the estimates of inlet efficiency in terms of the compression ratio and the total pressure recovery factor, it is close to the optimal two-dimensional shocked inlet of external compression considered by Oswatisch as well as Petrov and Ukhov. The flow in the inlet was computed with the use of the Euler and Navier — Stokes codes provided by the commercial package “FLUENT”. The flow in the inlet throat in the design regime computed under the inviscid flow approximation is uniform. The most substantial effect of the flow viscosity in this regime manifests itself in the interaction of the shock wave from the cowl with the boundary layer on the V-shaped compression body in the inlet internal duct. According to computed data, the boundary layer separation does not occur in this case; however, due to viscosity effects, reflected shock waves are formed here which results in significant deviations of flow structure as compared to the computed inviscid flow.  相似文献   

13.
The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ε = 350 at a pressure of 8 GPa, then drops sharply to ε = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.  相似文献   

14.
The proper orthogonal decomposition (POD) method was applied to analyzing the database obtained from the direct numerical simulation (DNS) of supersonic plane mixing layers. The effect of different forms of the inner products in the POD method was investigated. It was observed that the mean flow contributes to a predominant part of the total flow energy, and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes. The patterns of leading (high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls, as well as oblique vortices. These flow patterns are insensitive to the velocity of the observer. As the convective Mach number increases, the energy spectrum becomes wider, the leading POD modes contain more complicated structures, and the flow becomes more chaotic.  相似文献   

15.
A numerical study is carried out to compare the two-dimensional (2-D) case and three-dimensional (3-D) case for the modelling of an ion-exchanged glass waveguide. It is shown that different waveguide widths on the photomask correspond to different ion concentration distributions after an annealing process. A numerical example is presented of two waveguide sections with different widths indicates that due to the abrupt change of the waveguide width, a 3-D theoretical model is required for an accurate prediction of the parameters of ion-exchanged glass waveguides. The good agreement between the modelled and measured results proves that the developed 3-D numerical model can be beneficially utilized in the generalized design of optical devices based on ion-exchange waveguides.  相似文献   

16.

Abstract  

This paper describes experimental and numerical investigations into the multiple shock waves/turbulent boundary layer interaction in a supersonic inlet. The test model has a rectangular shape with an asymmetric subsonic diffuser of 5°. Experiments were conducted to obtain the visualization images and static pressure data by using supersonic wind tunnel. Numerical simulation was performed by solving the RANS equations with the Menter’s SST turbulent model. The inflow condition was a free-stream Mach number of 2.5 and a unit Reynolds number of 7.6 × 107/m. Numerical results showed good agreement with the experimental results. Based on this agreement, the flow characteristics which are often very difficult to obtain experimentally alone were analyzed with the aid of numerical simulation. The structures, pressure and velocity distributions, and total pressure loss of the pseudo-shock wave in the supersonic inlet were presented in detail from flow visualization images and static pressures.  相似文献   

17.
This paper describes a new three-dimensional (3D) analysis of tonal noise radiated from non-axisymmetric turbofan inlets. The novelty of the method is in combining a standard finite element discretisation of the acoustic field in the axial and radial coordinates with a Fourier spectral representation in the circumferential direction. The boundary conditions at the farfield, fan face and acoustic liners are treated using the same spectral representation. The resulting set of discrete acoustic equations are solved employing the well-established BICGSTAB or QMR iterative algorithms and a very effective specialised preconditioner based on the axisymmetric mean geometry and flow field. Numerical examples demonstrate the suitability of the new method to engine configurations with realistic 3D features, such as relatively large degrees of asymmetry and spliced acoustic liners. The examples also illustrate the two advantages of the new method over a traditional 3D finite element approach. The new method requires a significantly smaller number of unknowns as relatively few circumferential Fourier modes in the spectral solution ensure an accurate field representation. Also, due to the effective preconditioner, the spectral linear solver benefits from stable iterations at a high rate of convergence.  相似文献   

18.
Problems of optimization of flows past a thin body of revolution and a slender profile at a small angle of attack in the presence of local energy release zones and an external force acting on the flow near the surface are considered. Analysis is based on an analytic theory of supersonic flow past thin bodies presented in previous papers. The following problems are considered: drag reduction of a thin body of revolution, lift force enhancement of a profile with infinite aspect ratio, attenuation of acoustic noise generated by supersonic flows past bodies.  相似文献   

19.
Successful ignition in the recirculating flow of a scramjet flame holder can be highly dependent upon the location of energy deposition because of the spatial variation of fuel concentration and flow properties. The current work experimentally investigated ignition processes when energy was deposited (~100 mJ) via a spark discharge at four locations in the base of a cavity or by laser-induced breakdown in a Mach 2 flow with a stagnation temperature and pressure of 590 K and 483 kPa, respectively. The cavity was directly fueled with ethylene injection. The time dependent heat release was imaged at 40,000 frames per second and fuel concentration and distribution measurements were taken in the cavity prior to ignition. The average fuel concentration at the lean and rich ignition limits near the energy deposition locations measured 4.4–9.3% (Φ= 0.75 to 1.47). Energy deposition near the cavity step resulted in near immediate ignition kernel development and rapid achievement of self-sustained flame propagation in the front of the cavity, often faster than the bulk recirculation time of the cavity, leading to a spike in heat release. Energy deposition away from the cavity step region led to competition between local flow velocity, fuel concentration, and flame propagation rates. Ignition kernels formed along the floor of the cavity towards the closeout ramp and were rapidly advected towards the cavity step region before flame propagation could ensue. The fastest and most robust ignition events for all fueling cases showed rapid spanwise flame propagation near the cavity step.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号