首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of the k-Steiner interval is a natural generalization of the geodesic (binary) interval. It is defined as a mapping S:V×?×V?2V such that S(u1,…,uk) consists of all vertices in G that lie on some Steiner tree with respect to a multiset W={u1,…,uk} of vertices from G. In this paper we obtain, for each k, a characterization of the class of graphs in which every k-Steiner interval S has the so-called union property, which says that S(u1,…,uk) coincides with the union of geodesic intervals I(ui,uj) between all pairs from W. It turns out that, as soon as k>3, this class coincides with the class of graphs in which the k-Steiner interval enjoys the monotone axiom (m), respectively (b2) axiom, the conditions from betweenness theory. Notably, S satisfies (m), if x1,…,xkS(u1,…,uk) implies S(x1,…,xk)⊆S(u1,…,uk), and S satisfies (b2) if xS(u1,u2,…,uk) implies S(x,u2,…,uk)⊆S(u1,…,uk). In the case k=3, these three classes are different, and we give structural characterizations of graphs for which their Steiner interval S satisfies the union property as well as the monotone axiom (m). We also prove several partial observations on the class of graphs in which the 3-Steiner interval satisfies (b2), which lead to the conjecture that these are precisely the graphs in which every block is a geodetic graph with diameter at most two.  相似文献   

2.
An undirected graph G=(V,E) with a specific subset XV is called X-critical if G and G(X), induced subgraph on X, are indecomposable but G(V−{w}) is decomposable for every wVX. This is a generalization of critically indecomposable graphs studied by Schmerl and Trotter [J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Mathematics 113 (1993) 191-205] and Bonizzoni [P. Bonizzoni, Primitive 2-structures with the (n−2)-property, Theoretical Computer Science 132 (1994) 151-178], who deal with the case where X is empty.We present several structural results for this class of graphs and show that in every X-critical graph the vertices of VX can be partitioned into pairs (a1,b1),(a2,b2),…,(am,bm) such that G(V−{aj1,bj1,…,ajk,bjk}) is also an X-critical graph for arbitrary set of indices {j1,…,jk}. These vertex pairs are called commutative elimination sequence. If G is an arbitrary indecomposable graph with an indecomposable induced subgraph G(X), then the above result establishes the existence of an indecomposability preserving sequence of vertex pairs (x1,y1),…,(xt,yt) such that xi,yiVX. As an application of the commutative elimination sequence of an X-critical graph we present algorithms to extend a 3-coloring (similarly, 1-factor) of G(X) to entire G.  相似文献   

3.
Let f,gi,i=1,…,l,hj,j=1,…,m, be polynomials on Rn and S?{xRngi(x)=0,i=1,…,l,hj(x)≥0,j=1,…,m}. This paper proposes a method for finding the global infimum of the polynomial f on the semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S. Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converge, monotonically increasing to the infimum of f on S.  相似文献   

4.
A generalization of Sperner’s theorem is established: For a multifamily M={Y1,…,Yp} of subsets of {1,…,n} in which the repetition of subsets is allowed, a sharp lower bound for the number φ(M) of ordered pairs (i,j) satisfying ij and YiYj is determined. As an application, the minimum average distance of orientations of complete bipartite graphs is determined.  相似文献   

5.
A sequence d=(d1,d2,…,dn) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d=(d1,d2,…,dn) has a supereulerian realization if and only if dn≥2 and that d is line-hamiltonian if and only if either d1=n−1, or ∑di=1di≤∑dj≥2(dj−2).  相似文献   

6.
Ramsey regions     
Let (T1,T2,…,Tc) be a fixed c-tuple of sets of graphs (i.e. each Ti is a set of graphs). Let R(c,n,(T1,T2,…,Tc)) denote the set of all n-tuples, (a1,a2,…,an), such that every c-coloring of the edges of the complete multipartite graph, Ka1,a2,…,an, forces a monochromatic subgraph of color i from the set Ti (for at least one i). If N denotes the set of non-negative integers, then R(c,n,(T1,T2,…,Tc))⊆Nn. We call such a subset of Nn a “Ramsey region”. An application of Ramsey's Theorem shows that R(c,n,(T1,T2,…,Tc)) is non-empty for n?0. For a given c-tuple, (T1,T2,…,Tc), known results in Ramsey theory help identify values of n for which the associated Ramsey regions are non-empty and help establish specific points that are in such Ramsey regions. In this paper, we develop the basic theory and some of the underlying algebraic structure governing these regions.  相似文献   

7.
The Hamming space Qn is the set of binary words of length n. A partition (C1,C2,…,Cr) of Qn with quotient matrix B=[bij]r×r is equitable if for all i and j, any word in the cell Ci has exactly bij neighbors in the cell Cj. In this paper, we provide an explicit formula relating the local spectrum of cells in the face to that in the orthogonal face.  相似文献   

8.
A circulant C(n;S) with connection set S={a1,a2,…,am} is the graph with vertex set Zn, the cyclic group of order n, and edge set E={{i,j}:|ij|∈S}. The chromatic number of connected circulants of degree at most four has been previously determined completely by Heuberger [C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003) 153-169]. In this paper, we determine completely the chromatic number of connected circulants C(n;a,b,n/2) of degree 5. The methods used are essentially extensions of Heuberger’s method but the formulae developed are much more complex.  相似文献   

9.
Let H=(N,E,w) be a hypergraph with a node set N={0,1,…,n-1}, a hyperedge set E⊆2N, and real edge-weights w(e) for eE. Given a convex n-gon P in the plane with vertices x0,x1,…,xn-1 which are arranged in this order clockwisely, let each node iN correspond to the vertex xi and define the area AP(H) of H on P by the sum of the weighted areas of convex hulls for all hyperedges in H. For 0?i<j<k?n-1, a convex three-cut C(i,j,k) of N is {{i,…,j-1}, {j,…,k-1}, {k,…,n-1,0,…,i-1}} and its size cH(i,j,k) in H is defined as the sum of weights of edges eE such that e contains at least one node from each of {i,…,j-1}, {j,…,k-1} and {k,…,n-1,0,…,i-1}. We show that the following two conditions are equivalent:
AP(H)?AP(H) for all convex n-gons P.
cH(i,j,k)?cH(i,j,k) for all convex three-cuts C(i,j,k).
From this property, a polynomial time algorithm for determining whether or not given weighted hypergraphs H and H satisfy “AP(H)?AP(H) for all convex n-gons P” is immediately obtained.  相似文献   

10.
Let S(1),…,S(n),T(1),…,T(n) be random subsets of the set [m]={1,…,m}. We consider the random digraph D on the vertex set [n] defined as follows: the arc ij is present in D whenever S(i)∩T(j)≠0?. Assuming that the pairs of sets (S(i),T(i)), 1≤in, are independent and identically distributed, we study the in- and outdegree distributions of a typical vertex of D as n,m.  相似文献   

11.
Given a graph G=(V,E) with a cost function , we want to represent all possible min-cut values between pairs of vertices i and j. We consider also the special case with an additive cost c where there are vertex capacities c(v)?0∀vV, and for a subset SV, c(S)=∑vSc(v). We consider two variants of cuts: in the first one, separation, {i} and {j} are feasible cuts that disconnect i and j. In the second variant, vertex-cut, a cut-set that disconnects i from j does not include i or j. We consider both variants for undirected and directed graphs. We prove that there is a flow-tree for separations in undirected graphs. We also show that a compact representation does not exist for vertex-cuts in undirected graphs, even with additive costs. For directed graphs, a compact representation of the cut-values does not exist even with additive costs, for neither the separation nor the vertex-cut cases.  相似文献   

12.
This paper generalizes the concept of locally connected graphs. A graph G is triangularly connected if for every pair of edges e1,e2E(G), G has a sequence of 3-cycles C1,C2,…,Cl such that e1C1,e2Cl and E(Ci)∩E(Ci+1)≠∅ for 1?i?l-1. In this paper, we show that every triangularly connected quasi claw-free graph on at least three vertices is vertex pancyclic. Therefore, the conjecture proposed by Ainouche is solved.  相似文献   

13.
A graph G on n vertices is said to be separable cost constant Hamiltonian (SC-Hamiltonian) if and only if G is Hamiltonian and for any cost matrix C=(c(i,j)) associated with G where all tours have the same cost, there exist vectors a=(a1,…,an) and b=(b1,…,bn) such that . In this paper we show that for symmetric digraphs strong Hamiltonicity is a necessary condition for SC-Hamiltonicity. As a surprising consequence, we prove that the symmetric digraph obtained from an undirected SC-Hamiltonian graph by edge duplication need not be SC-Hamiltonian. This settles a conjecture of Kabadi and Punnen. We then show that an undirected graph on an even number of nodes having an edge that appears in every Hamiltonian cycle cannot be SC-Hamiltonian. Using this we establish that multiple subdivision of an edge need not preserve SC-Hamiltonicity, disproving a previous claim. Further, we identify other necessary conditions for SC-Hamiltonicity and obtain new classes of SC-Hamiltonian graphs.  相似文献   

14.
A quantum effect is a positive Hilbert space contraction operator. If {Ei}, 1?i?n, are n quantum effects (defined on some Hilbert space H), then their sequential product is the operator . It is proved that the quantum effects {Ei}, 1?i?n, are sequentially independent if and only if for every permutation r1r2rn of the set Sn={1,2,…,n}. The sequential independence of the effects Ei, 1?i?n, implies EnoEn-1ooEj+1oEjooE1=(EnoEn-1oEj+1)oEjooE1 for every 1?j?n. It is proved that if there exists an effect Ej, 1?j?n, such that Ej?(EnoEn-1oEj+1)oEjooE1, then the effects {Ei} are sequentially independent and satisfy .  相似文献   

15.
For a labeled tree on the vertex set {1,2,…,n}, the local direction of each edge (ij) is from i to j if i<j. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a vertex is called its indegree. Thus the local (resp. global) indegree sequence λ=e11e22… of a tree on the vertex set {1,2,…,n} is a partition of n−1. We construct a bijection from (unrooted) trees to rooted trees such that the local indegree sequence of a (unrooted) tree equals the global indegree sequence of the corresponding rooted tree. Combining with a Prüfer-like code for rooted labeled trees, we obtain a bijective proof of a recent conjecture by Cotterill and also solve two open problems proposed by Du and Yin. We also prove a q-multisum binomial coefficient identity which confirms another conjecture of Cotterill in a very special case.  相似文献   

16.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

17.
For integers n≥4 and νn+1, let ex(ν;{C3,…,Cn}) denote the maximum number of edges in a graph of order ν and girth at least n+1. The {C3,…,Cn}-free graphs with order ν and size ex(ν;{C3,…,Cn}) are called extremal graphs and denoted by EX(ν;{C3,…,Cn}). We prove that given an integer k≥0, for each n≥2log2(k+2) there exist extremal graphs with ν vertices, ν+k edges and minimum degree 1 or 2. Considering this idea we construct four infinite families of extremal graphs. We also see that minimal (r;g)-cages are the exclusive elements in EX(ν0(r,g);{C3,…,Cg−1}).  相似文献   

18.
19.
Let F1,F2,…,Fk be graphs with the same vertex set V. A subset SV is a factor dominating set if in every Fi every vertex not in S is adjacent to a vertex in S, and a factor total dominating set if in every Fi every vertex in V is adjacent to a vertex in S. The cardinality of a smallest such set is the factor (total) domination number. In this note, we investigate bounds on the factor (total) domination number. These bounds exploit results on colorings of graphs and transversals of hypergraphs.  相似文献   

20.
For a string A=a1an, a reversalρ(i,j), 1?i?j?n, transforms the string A into a string A=a1ai-1ajaj-1aiaj+1an, that is, the reversal ρ(i,j) reverses the order of symbols in the substring aiaj of A. In the case of signed strings, where each symbol is given a sign + or -, the reversal operation also flips the sign of each symbol in the reversed substring. Given two strings, A and B, signed or unsigned, sorting by reversals (SBR) is the problem of finding the minimum number of reversals that transform the string A into the string B.Traditionally, the problem was studied for permutations, that is, for strings in which every symbol appears exactly once. We consider a generalization of the problem, k-SBR, and allow each symbol to appear at most k times in each string, for some k?1. The main result of the paper is an O(k2)-approximation algorithm running in time O(n). For instances with , this is the best known approximation algorithm for k-SBR and, moreover, it is faster than the previous best approximation algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号