首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   

2.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

3.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

4.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

5.
A facile synthetic approach of conjugated rod‐coil block copolymers with poly(para‐phenylene) as the rod block and polystyrene or polyethylene glycol as the coil block was developed. The block copolymers were synthesized through a TEMPO‐mediated radical polymerization of 3,5‐cyclohexadiene‐1,2‐diol‐derived monomers (diacetate, dibenzonate, and dicarbonate), followed by thermal aromatization of the polymer precursor. The living character of the polymerization and the structure of the copolymers were studied by NMR, GPC, TGA, and UV–vis spectroscopy. The average conjugation lengths of the copolymers were calculated according to their maxima in UV–vis spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 800–808, 2007  相似文献   

6.
Two trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agents are compared in miniemulsion polymerization of styrene and butyl acrylate and the formation of seeded emulsion block copolymers. The order of block synthesis and the number of block segments per polymer are discussed. The use of nonionic surfactants is examined and the type of surfactant in relation to the monomer used is found to have a significant affect on latex formation. Conditions are shown by which AB and ABA type block copolymers can be successfully prepared via a seeded RAFT‐mediated emulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 588–604, 2007  相似文献   

7.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

8.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

9.
Well‐defined central functionalized asymmetric triblock copolymers (CFABC) were designed as a new type of polymer‐brush surface modifier with a short central functionalized block that could form chemical bonds with a suitable substrate surface. A combination of sequential living anionic polymerization and polymer modification reactions was used for the synthesis of two CFABCs: polystyrene‐b‐poly(4‐hydroxystyrene)‐b‐poly(methyl methacrylate) (3) and polystyrene‐b‐poly(4‐urethanopropyl triethoxysilylstyrene)‐b‐poly(methyl methacrylate) (4). The central block of 3, poly(4‐hydroxystyrene), was synthesized with a protected monomer, p‐[(tert‐butyldimethylsilyl)oxy]styrene, for the polymerization step, and this synthesis was followed by the hydrolysis of the silyl protecting group. To obtain polymer 4, the phenol functionality in 3 was converted to triethoxysilyl groups by a quantitative reaction with isocyanato propyl triethoxysilane. Gel permeation chromatography and NMR characterization indicated that the block copolymers possessed controlled molecular weights and narrow molecular weight distributions. Preliminary atomic force microscopy and X‐ray photoelectron spectroscopy analysis of the polymer brushes were reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3742–3750, 2000  相似文献   

10.
Ab initio emulsion polymerization of methyl methacrylate (MMA) using a water‐soluble organotellurium chain transfer agent in the presence of the surfactant Brij 98 in water is reported. Polymerization proceeded under both thermal and visible light‐irradiation conditions, giving poly(methyl methacrylate) (PMMA) with controlled molecular weight and low dispersity (?<1.5). Despite the formation of an opaque latex, the photoactivation of the organotellurium dormant species took place efficiently, as demonstrated by the quantitative monomer conversion and temporal control. Control of polymer particle size (PDI<0.030) was also achieved using a semi‐batch monomer addition process. The PMMA polymer in the particles retained high end‐group fidelity and was successfully used for the synthesis of block copolymers.  相似文献   

11.
Silver/carbon nanoparticles (9 nm) were incorporated, as reinforcements, into a matrix of poly(methyl methacrylate) via in situ miniemulsion polymerization. It was found by differential scanning calorimetry that the glass‐transition temperature of the poly(methyl methacrylate) showed an improvement of 14 °C with only 0.5 wt % nanoparticles in comparison with a pure poly(methyl methacrylate) control, which was also obtained by miniemulsion polymerization under the same conditions. This increase was related to a polymer chain mobility restriction due to a combination of bound plastic and joint plastic shell effects at the interphase and the surrounding regions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 511–518, 2007.  相似文献   

12.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

13.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

14.
The synthesis of block copolymers consisting of a polyethylene segment and either a poly(meth)acrylate or polystyrene segment was accomplished through the combination of postmetallocene-mediated ethylene polymerization and subsequent atom transfer radical polymerization. A vinyl-terminated polyethylene (number-average molecular weight = 1800, weight-average molecular weight/number-average molecular weight =1.70) was synthesized by the polymerization of ethylene with a phenoxyimine zirconium complex as a catalyst activated with methylalumoxane (MAO). This polyethylene was efficiently converted into an atom transfer radical polymerization macroinitiator by the addition of α-bromoisobutyric acid to the vinyl chain end, and the polyethylene macroinitiator was used for the atom transfer radical polymerization of n-butyl acrylate, methyl methacrylate, or styrene; this resulted in defined polyethylene-b-poly(n-butyl acrylate), polyethylene-b-poly(methyl methacrylate), and polyethylene-b-polystyrene block copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 496–504, 2004  相似文献   

15.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

16.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

17.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

18.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

19.
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007  相似文献   

20.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号