首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow particle filled polymer matrix composites, called syntactic foams, are challenging for studies related to environmental exposure and degradation mechanisms due to the possible role of matrix, particle–matrix interface, and particle material and wall thickness. In the current study, syntactic foams reinforced with 1 wt.% vapor grown carbon nanofibers (CNFs) are subjected to water immersion and characterized for residual compressive properties under quasi-static and high strain rates. The testing is conducted on four different types of syntactic foams, fabricated with glass hollow particles of two different densities: 220 and 460 kg/m3 in 30 and 50 vol.% quantities. After a period of 6 months, a maximum of 7% weight gain is observed in the worst performing syntactic foam. The exposed specimens are tested for residual compressive properties and the results are compared with the properties of dry specimens. The quasi-static compressive strength of CNF reinforced syntactic foams is found to decrease and the modulus remained unaffected due to the moisture exposure. The high strain rate compressive strength was 1.3–2.2 times higher for wet and dry specimens compared to the quasi-static strength of the same type of syntactic foams.  相似文献   

2.
This paper is concerned with the effects of the plasma surface treatment and the addition of CNT on the mechanical properties of carbon fiber/polytetrafluoroethylene (PTFE) composite. The tensile and flexural strength of composites containing CNT and plasma‐treated carbon fibers improved. The flexural strength first decreases with respect to the CF content. The flexural strength increases to 179 MPa for the plasma‐treated composite as compared with 167 MPa for the neat carbon fiber composites. The overall improvement is thus nearly 8%.  相似文献   

3.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

4.
Quasi-static and dynamic compressive tests are undertaken on the polyurethane (PU) foam and fumed silica reinforced polyurethane (PU/SiO2) foam experimentally. The ceramic microspheres with varying mass fractions are adopted to mix with the PU/SiO2 foam to fabricate the composite particle-reinforced foams. The effects of strain rate and particle mass fraction are discussed to identify and quantify the compressive response, energy-absorbing characteristic, and the associated mechanisms of the composite foams. The results show the initial collapse strength and plateau stress of the foams are improved significantly by reinforcing with the ceramic microsphere within 60 wt% at quasi-static compression. The rate sensitivity is observed on all the foams, but in different patterns due to the influence of ceramic microsphere. The compressive response affected by ceramic microsphere can be attributed to the particle cluster effect and stress wave propagation. Together with the deformation, the compressive characteristic experiences non-monotonic change from the low to high strain rates. The specific energy absorption (SEA) of the foam with 41 wt% ceramic microsphere show the largest magnitude at quasi-static compression. With the increasing strain rate, the ceramic reinforced foam exhibits superior energy absorption efficiency at high strain rates to that of the pure foams.  相似文献   

5.
Ternary composites of Polypropylene (PP)/Short Glass fibers (GF)/Hollow Glass Beads (HGB), with varying total and relative GF/HGB contents and using untreated and aminosilane-treated HGB compatibilized with maleated-PP, were prepared by direct injection molding of pre-extrusion compounded GF and HGB concentrates. The mechanical strength properties (tensile, flexural and Izod impact) were correlated with theoretical model predictions for hybrid composites, which identified synergistic gains over the rule of hybrid mixtures, depending upon the degree of interfacial interactions between the components of the hybrid composite. SEM analysis of cryofractured composites surfaces revealed that the presence of untreated HGB particles induces fiber-polymer interfacial decoupling under mechanical loading of the hybrid composites at much lower stress levels than in the presence of treated HGB particles. Higher storage modulus (E′) and lower mechanical damping (tan δ) from DMTA established the importance of strong polymer-hybrid reinforcement interfacial interactions in the development of lightweight/high strength PP syntactic foams.  相似文献   

6.
In the study walnut shells (WS) and silanized walnut shells (S_WS) were used as cellulosic fillers for novel polyurethane (PU) composite foams. The impact of 1, 2 and 5 wt% of WS and S_WS on the foaming parameters, mechanical and thermo-mechanical properties of obtained materials were evaluated. The results have shown that compared to untreated WS filler, the application of S_WS leads to PU foams with more regular structure and improved physico-mechanical behavior of PU materials. For example, compared to controlled WS_0 foam, PU foams enhanced with 1 wt% of the S_WS exhibited better mechanical properties, such as higher compressive strength (~15% of improvement), better impact strength (~6% of improvement), and improved tensile strength (~9% of improvement). The addition of S_WS improved the thermomechanical stability of PU foams. This work provides a better understanding of a relationship between the surface modification of the walnut shell filler and the mechanical, insulating and thermal properties of the PU composites. Due to these positive and beneficial effects, it can be stated that the use of WS and S_WS as natural fillers in PU composite foams can promote a new application path in converting agricultural waste into useful resources for creating a new class of green materials.  相似文献   

7.
This study compares the suitability of using birch kraft pulp or softwood kraft pulp in the preparation of TEMPO-oxidized pulp, MFC and superabsorbent foam. TEMPO oxidation was performed using five different dosages of primary oxidant. The time of disintegration treatment was varied to study its influence on the properties of the produced MFCs and foams. Both the birch and the softwood pulps could be used for producing superabsorbent foams, depending on the process conditions, the absorption capacities were about the same for the two pulps and varied between 25 and 55 g saline solution/g absorbent. The foams based on birch pulp had, however, on average, 30 % higher retention capacity than the foams based on softwood pulp. The maximum retention capacity obtained was 16.6 g saline solution/g absorbent. The greater retention capacity of birch-based foams is not fully understood, but a smaller pore size may be the reason, which in turn would generate greater capillary forces. In addition to this, it was found that birch pulps, contrary to softwood pulps, had a substantial amount of fibers that were relatively unaffected by the disintegration treatment. These oxidized fibers are likely to reinforce the foam, thereby making the foam more resistant to external pressures, which is in accordance with earlier findings.  相似文献   

8.
A novel and conventional closed cell polyisoprene rubber (IR) foams were produced by a single step limited‐expansion and two step unlimited‐expansion foaming process, respectively. The effect of 3 to 12 part per hundred rubber (phr) of azodicarbonamide (ADC) foaming agent on their structure and properties of developed novel foams were studied. In developed novel foams, the density was strangely independent of ADC content; however, the cell sizes conversely related to ADC content and it decreased by 60% (555‐330 μm) and the internal cell pressure build up from 1 to 3.7 atm, which was related to pressure‐free foaming method. The both reasons of compressed gas trapped inside cells and constant density not only caused unique enhancement in novel foams mechanical properties as hardness and modulus but also improved their dynamic properties as hysteresis and elasticity. Results of conventional IR foams showed that, their foam density as well as dynamic and mechanical properties sharply decreased with increasing ADC content from 3 to 12 phr. For clear expression, in samples with 12 phr of ADC, novel developed foams have more foam density (180%), more hardness (240%), more modulus (290%), and smaller cell size (75%) than conventional foams. Finally, novel developed foams were super‐elastic material with no hysteresis and no plastic deformation while conventional foams had 40% hysteresis and 10% plastic deformation under the same compression conditions.  相似文献   

9.
In this study, nineteen unmodified lignins from various sources (hardwood, softwood, wheat straw, and corn stover) and isolation processes (kraft, soda, organosolv, sulfite, and enzymatic hydrolysis) were used to replace 30 wt.% of petroleum-based polyol in rigid polyurethane/polyisocyanurate (PUR/PIR) foam formulations. Lignin samples were characterized by measuring their ash content, hydroxyl content (Phosphorus Nuclear Magnetic Resonance Spectroscopy), impurities (Inductively Coupled Plasma), and pH. After foam formulation, properties of lignin-based foams were evaluated and compared with a control foam (with no lignin) via cell morphology, closed-cell content, compression strength, apparent density, thermal conductivity, and color analysis. Lignin-based foams passed all measured standard specifications required by ASTM International C1029-15 for type 1 rigid insulation foams, except for three foams. These three foams had poor compressive strengths, significantly larger cell sizes, darker color, lower closed-cell contents, and slower foaming times. The foam made with corn stover enzymatic hydrolysis lignin showed no significant difference from the control foam in terms of compressive strength and outperformed all other lignin-based foams due to its higher aliphatic and p-hydroxyphenyl hydroxyl contents. Lignin-based foams that passed all required performance testing were made with lignins having higher pH, potassium, sodium, calcium, magnesium, and aliphatic/p-hydroxyphenyl hydroxyl group contents than those that failed.  相似文献   

10.
噻吩衍生物是合成导电高分子材料的单体之一,在有机电致发光器件和电能存储等方面有着广泛的应用。聚3-(4-氟苯基)噻吩(PFPT)是一类既可进行p型掺杂又可进行n型掺杂的窄能带聚合物,在导电高分子型电化学电容器方面具有很好的应用前景,聚丙烯腈微孔膜已在锂离子电池方面有了很好的应用。若将它与碳纸复合后,再进行高温碳化和CO2活化,可制得导电性好、比表面积大的片状材料,作为电化学电容器的电极材料具有一定的双电层电容量.本文在三电极电解池中以这种材料的薄片为工作电极使3-(4-氟苯基)噻吩在乙腈溶液中进行电化学聚合,制备了聚3-(4-氟苯基)噻吩/碳化聚丙烯腈泡沫复合电极并研究了电极的电化学特性。  相似文献   

11.
《先进技术聚合物》2018,29(7):1953-1965
Poly(butylene succinate) urethane ionomer (PBSUIs) foams with nano‐microcellular morphology were fabricated using supercritical CO2 (sc‐CO2) at different parameters. Effect of urethane ionic group (UIG) content (ranged from 1% to 5%) on the rheology and crystallization of PBSUIs were evaluated by intrinsic, dynamic rheological, X‐ray diffraction, and differential scanning calorimetry measurements. The results show that the complex viscosity of PBSUIs vastly improved, while their intrinsic viscosity and crystallinity decreased. They also evidenced that CO2 promoted the formation of crystallites in the amorphous and increased the Xc of PBSU and PBSUIs foams. Scanning electron microscope was employed to explore the influences of UIG content and foaming parameters on the morphologies of PBSUIs microcellular foams, and it revealed that UIG content was the dominated factor. The cell size and cell densities of PBSUIs microcellular foams were smaller than 5.0 micrometers and higher than 1.5 × 1010 cells/cm3, respectively, even foamed at diverse variations of foam temperature and pressure. Interestingly, PBSUIs with 3% and 5% UIG content achieved microcellular foams in nano‐cells, high‐stretched elliptical shape. The mechanism was ascribed that these PBSUIs with high melt viscosities could retard the CO2 bubbles to merge during the foam process and induce the cells to stretch and orient in depressururization direction. This study proposed a novel method for fabricating PBS nano‐microcellular foams.  相似文献   

12.
In order to obtain cellular materials with low dielectric properties, crosslinked polyimide foams were prepared using 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), 4,4′‐oxydianiline (ODA) and 2,4,6‐triaminopyrimidine (TAP) as monomer via a poly(ester‐amine salt) precursor process. The structures of the precursors and the polyimide foams were characterized by thermogravimetric analysis (TGA) and FT‐IR, while the morphologies of the polyimide foams were viewed from scanning electron microscopy (SEM) measurements. The results revealed that the poly(ester‐amine salt) precursor containing TAP could successfully be converted to a crosslinked polyimide foam with relatively uniform cell structure. Also, the crosslinking of TAP improved the mechanical properties of foams in comparison with the non‐crosslinking systems. With increasing content of TAP, the dielectric constants of the polyimide foams decreased gradually. For the foam with TAP molar ratio at 15%, the dielectric constant was as low as 1.77 at the frequency of 10 kHz. Though the thermal resistance decreased slightly for crosslinked foams, the decomposition temperatures were still maintained above 520°C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The flexural modulus of polymeric foams determined from three-point bending tests is usually inaccurate due to the local deformation undergone by the material during testing. The machine used in the test gives deflection values larger than the actual deflection of the foam specimen due to the deformation of the material at the loading point. This leads to errors in the computation of the modulus value. In this work, the deflection values of a beam made of polymeric foam in a three-point bending test were determined using the moiré method. The change in the moiré pattern at the neutral axis of the foam during loading was recorded and converted into deflection values. The deflection data were used to generate the stress–strain curve from which the flexural modulus of the foam material was determined. The proposed method was verified using aluminum beams, where a high correlation between the deflection data from the machine readings and the moiré method was obtained. The flexural modulus of the foam determined using the moiré method was found to be within 3% of the value published in the material data sheet.  相似文献   

14.
We herein presented a mesoporous cellular foam solid‐phase microextraction coating that showed highly sensitive recognition for weakly polarity polychlorinated biphenyls in water samples. The mesoporous cellular foam coater fiber was for the first time prepared by a simple sol‐gel method. The main experimental parameters including extraction temperature, extraction time, desorption time, stirring rate, and ionic strength were investigated by high‐efficiency orthogonal array design, a L16 (44) matrix was applied for the identification of optimized extraction parameters, and the optimized method was successfully applied to the analysis of environmental water sample. The novel mesoporous cellular foam coated fibers exhibited sensitive limits of detection (0.07–0.28 µg/L), wide linearity (5–3000 µg/L), and good reproducibility (3.5–8.3% for single fiber, and 4.9–8.7% for fiber‐to‐fiber) for polychlorinated biphenyls. The home‐made coating was successfully used in the analysis of polychlorinated biphenyls in real environmental water samples. These results indicate that the synthesized mesoporous cellular foams are promising materials for adsorption and separation applications in sample pretreatment.  相似文献   

15.
Syntactic foams are manufactured to provide buoyancy to submarine devices. Last investigations were realized to study new syntactic foams which can be employed until six thousand meters deep. The syntactic materials made by S.N.P.E. are used mainly to buoy submarine devices and so, have to withstand very high pressures. So their components have to be made of high performance elements, thus, we employ epoxy matrices who possess low viscosity for wetting and casting easier. Fillers are glass microspheres, the average diameter of which are in the range of 50 to 100 μm. In order to use syntactic materials for this application the thermal and mechanical behaviour of some syntactic foams was characterized. We show some results of the syntactic foams. An other group of tests has been done in order to study the damage of the materials during an increase of the hydrostatic pressure. These tests have been conducted in a qualitative way in order to show the different eventual damage mechanisms. Also in the future syntactic materials have common interests with structural composite materials, hence we can assess their importance in the future, particularly in submarine projects.  相似文献   

16.
In this study, a series of reinforced polyimide (PI)/carbon fiber (CF) composite foams were fabricated through thermal foaming of polyester ammonium salt (PEAS) precursor powders. The PEAS precursor powders containing different contents of chopped CF were synthesized from benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride (BTDA) and 4,4′‐diaminodiphenyl ether (ODA). The effects of different CF loadings on foaming behavior of PEAS/CF composite precursor powders, final cellular morphology, and physical properties of PI composite foams were investigated. The results revealed that the chopped CF acted as nucleation agent in the foaming process. The dispersion of CF can be evaluated using digital microscope. It is interesting to find that the chopped CF were highly oriented along the direction of cell arrises. As a result, the mechanical properties of PI foams were significantly enhanced owing to the incorporation of chopped CF. Furthermore, the thermal stability of PI composite foams were also slightly improved owing to fine dispersion of CF. In addition, the PI/CF composite foam shows uniform cell size distribution and the best comprehensive physical properties as chopped CF loading at around 6 wt%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Biocomposites based on poly(butylene succinate) (PBS) and curaua fibers have been produced by compression molding, and investigated as a function of fiber length and amount. Mechanical tests, water uptake and morphology studies were carried out in order to assess the composite features according to the characteristics of the reinforcing agents. It turns out that the impact and flexural strengths increase with fiber content. Moreover, the fiber length, varying from 1 to 4 cm for the composite reinforced with 20 wt% of fiber, influences impact strength, which is higher for shorter than for longer fibers. However, flexural strength is not greatly influenced by the length of the fibers. Water uptake studies reveal a higher sensitivity of the material to fiber content rather than fiber size. Biocomposites, which are characterized by enhanced mechanical properties as compared to PBS, can have different applications, for example in rigid packaging or interior car parts.  相似文献   

18.
《先进技术聚合物》2018,29(7):1879-1888
This work reports the synthesis of rigid polyurethane (PU) foams modified by disilanolisobutyl polyhedral oligomeric silsesquioxane (DSIPOSS). This open‐cage nanostructure silsesquioxane has 2 hydroxyl groups and therefore can be chemically built directly in the PU backbone to form hybrid polyurethane‐POSS foam. Synthesis procedure using polymeric 4,4′‐diphenylmethane diisocyanate, polyetherol, and DSIPOSS has been elaborated, and the influence of POSS on the cell structure, closed cell content, apparent density, thermal conductivity, and compression strength of the rigid polyurethane composites has been evaluated. The hybrid composite foams containing 1.5 and 2.0 wt% DSIPOSS showed a reduced number of cells and an increased average area of foam cells in comparison with the unmodified PU, while the addition of 0.5wt% of DSIPOSS causes an increase in the number of cells of the foam as compared with the reference and thus a reduction in the average area of cells. X‐ray microtomography provided data on the porous structure of polyurethane hybrid materials, including reduction of the pore surface area. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy analysis revealed a good homogenization of DSIPOSS in polyurethane matrix. Thermogravimetric analysis results have shown that incorporation of POSS nanoparticles into PU foam does not significantly change the degradation process. The compressive strength of PUF‐POSS hybrids in the direction parallel and perpendicular to the direction of foam rise is greater than the strength of the reference foam already for the lowest DSIPOSS content.  相似文献   

19.
Bio‐based foams are the solution to environmental concerns raised by petrochemical‐based open cell foams used in various industries for sound absorption. While conventional petrochemical‐based polymers take centuries to degrade or may not degrade at all, bio‐based polymers decompose to biomass, water, and carbon dioxide in a matter of months when exposed to proper environment. To increase the potential of replacing current petrochemical foams, mechanical as well as acoustic characteristics of bio‐based foams need to be improved. This article studies the effect of blending two bio‐based polymers and physics of the blends on acoustic and mechanical properties of resulting polymer composite foams. Different blends of polylactide with three grades of polyhydroxyalkanoates were foamed and characterized based on acoustic and mechanical performance. Rheological properties of pure polymers as well as their blends were studied and effect of polymer blends on acoustic absorption of the resulting foams was investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1002–1013  相似文献   

20.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号