首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

2.
Acetylenic monomers undergo aqueous suspension polymerization providing particles constructed by helical substituted polyacetylene. Different from suspension polymerization of vinyl monomers, a cosolvent is indispensable to dissolve Rh catalyst and solid acetylenic monomers. The cosolvent is found to play essential roles in monomers' polymerization and the particles' formation. To systemically explore the effects of cosolvents, three monomers, M1 (achiral, liquid), M2 (achiral, solid), and M3 (chiral, solid), and six cosolvents (divided into two groups by their miscibility with water) are used for performing suspension polymerization in aqueous media at 30 °C, with Rh+B (C6H5)4 as catalyst and polyvinylpyrrolidone as stabilizer. FTIR spectra and gel permeation chromatography confirm the occurrence of polymerization. Raman spectra demonstrate the high cis contents of the polymer chains. Scanning electron microscope images show that the polymer particles obtained under optimal conditions are in spherical morphology. Circular dichroism and UV‐vis spectroscopy demonstrate the helical structures of the polymer chains forming the chiral particles. Dynamic light scattering characterization is carried out to characterize the nanoparticles. The type and amount of the cosolvent affect the polymerization remarkably. Cosolvents with higher polarity lead to smaller polymer particles, while lower polar cosolvents provide larger ones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2670–2678  相似文献   

3.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   

4.
The living cationic polymerization of 4‐[2‐(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4‐[2‐(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase‐transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138–5146, 2005  相似文献   

5.
The influence of solvents and catalysts on the formation of soluble and insoluble polymer during cationic polymerization of 2,5-dimethyl-l,5-hexadiene was studied. In nonpolar medium (n-heptane or without solvent) the amount of the insoluble part is dependent on the catalyst used and increases as follows: BF3 ? AlBr3 < TiCl4. Especially soluble polymers are obtained in a solution of methylene chloride or in a mixture of methylene chloride-nitrobenzene. The temperature range studied, -30° to -78°, did not show any important influence on the polymer composition. It was found that the bulky anion of the initiator and the polarity of the medium considerably influenced cyclization during intra-intermolecular propagation of the polymer chain.  相似文献   

6.
Radical polymerization of lactic acid‐based chiral and achiral methylene dioxolanones, a model for conformationally s‐cis locked acrylate, was carried out with AIBN to demonstrate an isospecific free radical polymerization controlled by chirality and conformation of monomer. Polymerization of the dioxolanones proceeded smoothly without ring opening to give a polymer with moderate molecular weight and 100% of maximum isotacticity. ESR spectrum indicated a twisted conformation of the growing poly(methylene dioxolanone) radical in contrast to an acyclic analogous radical, suggesting a restriction of the free rotation around main chain Cα? Cβ bond of the growing radical center. Chirality as well as the polarity and bulkiness of monomer affected the polymer tacticity, and chiral alkyl substituent would afford a high isotactic polymer, in which higher the enantiomeric excess of the monomer was, higher the isotacticity of the polymer was. While, achiral or polar substituents including dibenzyl and trichloromethyl groups would afford an atactic polymer. In addition, glass transition temperature (Tg) of the resulting polymers was significantly high, ranging from 172.2 to 229.8 °C, and even for an isotactic polymer Tg was as high as 206.8 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2007–2016  相似文献   

7.
It was found that linear phosphonitrilic chloride could be used as a catalyst for ring-opening polymerization of tetrahydrofuran. Bulk polymerizations were carried out in a nitrogen atmosphere. After termination of polymerization, the reaction mixture was poured into water, thereby decomposing the catalyst. The product was dissolved in benzene and then subjected to lyophilization. The polymerization of tetrahydrofuran in the presence of linear phosphonitrilic chloride was found to be an equilibrium and a “living” polymerization. The polymerization product includes little phosphorus, and its infrared absorption spectrum agrees well with that of the polymer obtained with PF5 catalyst. The results of the polymerization using epichlorohydrin as a promoter show that the number of active sites in the molecule of linear phosphonitrilic chloride is considerably smaller. Consequently it is conceivable that the catalytic activity of the linear phosphonitrilic chloride is attributed to its terminal ~~P+Cl3PCl?6 structure. Furthermore we presume that the polymerization of tetra-hydrofuran in the presence of this catalyst proceeds through a cationic ring-opening mechanism.  相似文献   

8.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   

9.
Macromolecular design by interchange of xanthates/reversible addition fragmentation chain transfer polymerization (MADIX/RAFT) of diallyldimethylammonium chloride (DADMAC) using the hydrophobic O‐ethyl‐S‐(1‐methoxycarbonyl) ethyl dithiocarbonate MADIX/RAFT mediating agent, Rhodixan A1, was investigated. Attempts to obtain an efficient control of DADMAC polymerization in a water/ethanol mixture failed because of significant chain transfer to ethanol. The use of a water‐soluble Rhodixan A1‐terminated acrylamide oligomer as the MADIX/RAFT agent enabled the controlled polymerization of DADMAC in water at 50 °C using the cationic azo initiator V‐50. An excellent agreement was found between experimental and theoretical Mn values throughout polymerization and over a broad range of initial concentration of xanthate. Polydispersity indexes (PDIs) at the end of the polymerization were abnormally high for a process showing a linear increase of Mn with monomer conversion (1.8 < PDI < 2.0). This feature was explained by the measurement of a high transfer constant to xanthate (Cx = 18.8 ± 1.6) but a low interchange transfer constant (Cex = 1.5). Nevertheless, poly(acrylamide)–poly(DADMAC) double hydrophilic block copolymers (DHBCs) of controlled Mn and composition could be successfully synthesized for the first time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Unprotected exo,exo‐5‐norbornene‐2,3‐dicarboxylic acid and exo,exo‐7‐oxa‐5‐norbornene‐2,3‐dicarboxylic acid were polymerized via ring‐opening metathesis polymerization. This reaction yielded polymers with molecular weights (Mn from GPC) ranging from 31 to 242 kg/mol and polydispersity indices between 1.05 and 1.12, using Grubbs' third generation catalyst. The water solubility as a function of pH value of the polymers was investigated by dynamic light scattering (DLS). DLS and acid‐base titration revealed that the oxanorbornene polymer was water soluble over a wider pH range than its norbornene analog. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1266–1273, 2009  相似文献   

11.
The heterogeneous catalytic polymerization of styrene vapor with a tetrakis(acetonitrile)palladium(II) tetrafluoroborate, [Pd(CH3CN)4][BF4]2, thin film has been demonstrated. The catalyst is deposited by nebulization of dilute solutions onto a quartz crystal microbalance (QCM) and then exposed to styrene vapor in controlled environments. The use of QCM allows in situ monitoring of catalyst deposition and polymer growth kinetics. The polymerization process appears to involve the entire catalyst film rather than polymerization only at the catalyst film surface. The styrene vapor polymerization occurs rapidly after a short induction time needed for monomer dissolution and catalyst activation. The narrow molecular weight distribution of the produced polymer suggests that the deposited film acts as a single site catalyst. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1930–1934, 2005  相似文献   

12.
We investigated the cationic polymerization of vinyl ethers using metal complex catalysts with salen and salphen ligands. Metal complexes were generated in situ from the reaction of a ligand and a metal chloride. The choice of a ligand and a central metal was crucial for tuning the catalyst function such as catalytic activity and controllability of the polymerization. Among metal chlorides employed, ZrCl4 was the most efficient for controlled polymerization. Cationic polymerization of isobutyl vinyl ether (IBVE) proceeded using the salen and salphen‐type ligand/ZrCl4 initiating systems, yielding polymers with predetermined molecular weights and narrow molecular weight distributions. Importantly, the structural effects of the complex catalysts were responsible for the polymerization behavior. For example, the polymerization using the salen‐type ligand/ZrCl4 system was much slower than that using the salphen‐type ligand/ZrCl4 system. In addition, the polymerization of IBVE using the salen‐type ligand/FeCl3 system proceeded in a controlled manner, which was in contrast to uncontrolled polymerization using the salphen‐type ligand/FeCl3 system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 989–996  相似文献   

13.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

14.
Linear soluble polybenzyls, although deceptively simple in structure, have been strangely elusive. We report for the first time the synthesis of perfectly linear soluble polybenzyls by the polycondensation of 1,2,4,5‐tetrasubstituted benzenes with formaldehyde using CHCl3/trifluoroacetic acid (TFA) as the medium, wherein TFA served both as an acidic catalyst as well as a cosolvent. The number‐average molecular weights (Mn's) of the polymers, as determined by gel permeation chromatography, varied from about 1000 to 37,000, depending on the nature of the substituent on the benzene ring; Mn was highest when all four substituents were alkoxy groups and was lowest when they were all alkyl groups. This correlated well with susceptibility of the aromatic ring toward electrophilic aromatic substitution, which is the underlying polymerization mechanism. Differential scanning calorimetry of the polymers showed that most of the samples were amorphous with glass‐transition temperatures ranging from about ?80° to +80 °C, whereas a few that were either symmetrically substituted or possessed a long alkyl substituent were partially crystalline. Preliminary studies suggested that the methylene unit linking the phenyl rings in these polybenzyls could be readily oxidized to generate conjugated polymers that may be perceived as carbon analogues of polyaniline–poly(arylmethine)s. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2345–2353, 2003  相似文献   

15.
The click chemistry strategy is successfully applied for the preparation of three‐arm star (A3) ring opening metathesis polymers. A well‐defined monoazide end‐functionalized poly(N‐ethyl oxanorbornene) and a poly(N‐butyl oxanorbornene) obtained via ring opening metathesis polymerization using first generation Grubbs' catalyst are simply clicked with the trisalkyne core affording the synthesis of target star polymers. The obtained star polymers are characterized via nuclear magnetic resonance spectroscopy and gel permeation chromatography (GPC). The deconvolution analyses of GPC traces reveal that the click reaction efficiency for the star formation strongly depends on the chemical nature and the molecular weight of ROM polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2344–2351, 2009  相似文献   

16.
The catalyst DADNi(NCS)2 (DAD = (ArN?C(Me)? C(Me)?ArN); Ar = 2,6‐C6H3), activated by methylaluminoxane, was tested in ethylene polymerization at temperatures above 25 °C and variable Al/Ni ratio. The system was shown to be active even at 80 °C and when supported on silica. However, catalyst activity decreased. The catalyst system was also tested in ethylene and 10‐undecen‐1‐ol copolymerization at different ethylene pressures. The best activities were obtained at low polar monomer concentration (0.017 mol/L), using triisopropylaluminum (Al‐i‐Pr3) to protect the polar monomer. The incorporation of the comonomer increased with the increase of polar monomer concentration. According to 13C NMR analyses, all the resulting polyethylenes were highly branched and the polar monomer incorporation decreased as ethylene pressure increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5199–5208, 2007  相似文献   

17.
The cationic polymerization of 2‐[4‐(methoxycarbonyl)phenoxy] ethyl vinyl ether, a vinyl ether with a benzoate pendant, was carried out with an HCl/ZnCl2 initiating system in methylene chloride at −15 °C. The polymerization proceeded with living/long‐lived propagating species to produce polymers with controlled molecular weights and relatively narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ ∼1.4), despite the formation of a small amount of oligomeric products during the polymerization. The structural analysis showed that the lowest molecular weight oligomer had the structure CH3CH(OCH2CH2OC6H4COOCH3)OCH2CH2OC6H4COOCH3. The oligomer was formed by the reaction of the monomeric propagating species with the alcohol produced by the side reaction of the active species with water as an impurity during the early stage of polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4362–4372, 2000  相似文献   

18.
The kinetics of the initiation and propagation of the ring‐opening metathesis polymerization of exo,exo‐5,6‐bis(methoxycarbonyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene catalyzed by Grubbs' catalyst (Cl2(PCy3)2Ru?CHPh) were measured by ultraviolet–visible and 1H NMR spectroscopy, respectively. Activation parameters for these processes were also determined. Although the ratio of the rate constant of initiation to the rate constant of propagation was determined to be less than 1 for this system, this polymerization showed many of the characteristics of a living system, including low polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2125–2131, 2003  相似文献   

19.
The cationic polymerization of n‐hexyloxyallene was investigated by using halogen‐bonding organocatalysts ( Cat A – Cat D ). Although the neutral catalyst Cat C showed a poor polymerization activity, iodine‐carrying bidentate cationic catalyst Cat A brought about the smooth polymerization giving rise to a polymer with Mn of 2710 under [ Cat A ]:[IBVE‐HCl]:[monomer] = 10:10:500 in mM concentrations. Judging from the color change of polymerization system and electrospray ionization mass spectra of recovered catalyst, the decomposition of organocatalyst was suggested. When α‐bromodiphenylmethane was used as an initiator, the relatively controlled polymerization proceeded at the low monomer conversion likely due to the weak halogen‐bonding interaction of Cat A with the bromide anion. On the other hand, bromine‐carrying bidentate catalyst Cat D gave low‐molecular‐weight polymers (Mn < 1550) to be less suitable for polymerization. From the 1H‐NMR spectrum, it was found that the 1,2‐polymerization unit and 2,3‐polymerization unit are included in 75:25. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2436–2441  相似文献   

20.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号