首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以分子印迹作为识别体,制成高灵敏度和高选择性的化学发光传感器在线检测牛肉与鸡肉组织中残留的磺胺嘧啶。磺胺嘧啶作为靶分子,通过悬浮聚合制备了1~10μm的分子印迹聚合物。将分子印迹聚合物装入聚四氟乙烯管中,作为固相萃取柱,并联在八通阀上,用于在线选择吸附磺胺嘧啶。在最佳条件下,测得磺胺嘧啶线性范围7.0×10–9~9.0×10–7g/mL,方法的检出限为(3σ)2×10–10g/mL,11次平行测定3.0×10–8g/mL的磺胺嘧啶溶液的化学发光强度相对标准偏差为3.4%。方法能够用于检测肉类产品中残留的磺胺嘧啶。  相似文献   

2.
He D  Zhang Z  Zhou H  Huang Y 《Talanta》2006,69(5):1215-1220
Based on a molecularly imprinted polymer (MIP) as the recognition element, a novel chemiluminescence (CL) micro flow sensor on a chip for the determination of terbutaline in human serum is described. The MIP was prepared by using terbutaline as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, and acetonitrile as the solvent. The chip was fabricated from two 50 mm × 40 mm × 5 mm transparent poly (methylmethacrylate) (PMMA) slices. The microchannels on the chip etched by CO2 laser were 200 μm wide and 150 μm deep. The microsensor cell filled with 2 mg MIP for selectively on line adsorbing terbutaline was 10 mm long, 1 mm wide, and 0.5 mm deep. All reagents were controlled by the syringe pump with an accurate timer. The on line adsorbed terbutaline by the MIP can enhance the CL intensity of the reaction of luminol with ferricyanide. The enhanced CL intensity is linear with terbutaline concentration from 8.0 to 100 ng/mL with a detection limit of 4.0 ng/mL (3σ). The micro flow sensor provides for good reproducibility with the relative standard deviation of 3.6% (n = 7) for 20 ng/mL terbutaline.  相似文献   

3.
氯丙嗪分子印迹化学发光微流控传感器芯片的研究   总被引:5,自引:0,他引:5  
以氯丙嗪分子印迹聚合物为识别物质,以鲁米诺-K3Fe(CN)6化学发光体系,建立了一种新型的氯丙嗪化学发光微流控分子印迹传感器芯片的检测方法。利用二氧化碳激光在聚甲基丙烯酸甲酯材质上刻蚀出200μm宽,150μm深的微通道,8 mm长,1 mm宽,0.5 mm深的微检测池。微检测池中填充50μm粒径大小的热聚合得到的氯丙嗪分子印迹聚合物作为识别物质,在线富集氯丙嗪,富集的氯丙嗪可以增强鲁米诺和K3Fe(CN)6的化学发光强度,以化学发光强度定量氯丙嗪量。该传感器的响应值与0.02~0.4μg/mL氯丙嗪呈良好的线性关系,检出限为8 ng/mL(3σ)。该微流控传感器芯片已用于测定人尿液中的氯丙嗪。  相似文献   

4.
合成了甲福明的分子印迹聚合物,以此聚合物为识别物质,在线分离富集甲福明,建立了一种测定甲福明的流动式化学发光但感器。N-溴代丁二酰亚胺(NBS)和荧光素与甲福明发生化学反应,产生强的化学发光。甲福明质量浓度在2×10-8~8×10-6g/mL范围内同发光强度成良好线性关系,方法的检出限为6×10-9g/mL,相对标准偏差小于5%(n=9)。选择性实验表明将分子印迹聚合物作为识别物质应用于化学发光分析中,能大大提高化学发光分析方法的选择性。该传感器可逆性强、稳定性好,可重复使用100次以上,已用于人体尿样中甲福明的测定。  相似文献   

5.
In this paper, a novel flow chemiluminescence (CL) clenbuterol sensor based on molecularly imprinted polymer (MIP) on line enrichment nanogram clenbuterol and chemiluminescence reaction of potassium permanganate and formaldehyde in the polyphosphate enhanced by clenbuterol. Clenbuterol in the urine was selectively adsorbed on the clenbuterol-imprinted polymer, which was packed into the flow cell. The formaldehyde and the polyphosphate with potassium permanganate flowed through the flow cell and reacted with the on line adsorbed clenbuterol and produced strong CL. The results show that the sensor was reversible. The CL intensity was linear with clenbuterol concentration from 1.0 × 10−9 g/mL to 5.0 × 10−8 g/mL. The detection limit was 3.0 × 10−10 g/mL. The R.S.D. for ng/mL clenbuterol was less than 5% (n = 3). The present method offered a high selectivity and sensitivity that made the quantitative analysis of trace clenbuterol (ng/mL) in the animal urine sample.  相似文献   

6.
A novel and highly selective optical sensor with molecularly imprinted polymer (MIP) film was fabricated and investigated. The optical sensor head employing a medium finesse molecularly imprinted polymer film has been fabricated and characterised. A blank polymer and formaldehyde imprinted polymer were using methacrylic acid as the functional monomer and the ethylene glycol dimethacrylate as a crosslinker. The transduction mechanism is discussed based on the changes of optical intensity of molecularly imprinted polymer film acting as an optical reflected sensor. Template molecules, which diffused into MIP, could cause film density, and refractive index change, and then induce measurable optical reflective intensity shifts. Based on the reflective intensity shifts, an optical reflection detection of formaldehyde was achieved by illuminating MIP with a laser beam. For the same MIP, the reflective intensity shift was proportional to the amount of template molecule. This optical sensor, based on an artificial recognition system, demonstrates long-time stability and resistance to harsh chemical environments. As the research moves forward gradually, we establish the possibilities of quantitative analysis primly, setting the groundwork to the synthesis of the molecular imprinted optical fiber sensor. The techniques show good reproducibility and sensitivity and will be of significant interest to the MIPcommunity.  相似文献   

7.
制备了白藜芦醇的分子印迹聚合物,用聚四氟乙烯管作为微固相萃取柱,连接在流动注射系统的八通阀上,对白藜芦醇进行富集和分离;经甲醇和乙酸混合洗脱液(9:1,V/V)在线洗脱后与酸性KMnO4发生化学发光反应.测定白藜芦醇的线性范围2.5×10-7~6.1×10-5g/mL,方法的检出限为(3σ)8×10-8g/mL,11次...  相似文献   

8.
Lakshmi D  Prasad BB  Sharma PS 《Talanta》2006,70(2):272-280
Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4 V versus Ag/AgCl for 120 s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (≤+0.3 V) HMDE. The creatinine was preconcentrated and instantaneously oxidised in MIP layer giving DPCSV response in the concentration range of 0.0025-84.0 μg mL−1 [detection limit (3σ) 1.49 ng mL−1]. The sensor was found to be highly selective for creatinine without any response of interferents viz., NaCl, urea, creatine, glucose, phenylalanine, tyrosine, histidine and cytosine. The non-imprinted polymer-modified electrode did not show linear response to creatinine. The imprinting factor as high as 9.4 implies that the imprinted polymer exclusively acts as a recognition element of creatinine sensor. The proposed procedure can be used to determine creatinine in human blood serum without any preliminary treatment of the sample in an accurate, rapid and simple way.  相似文献   

9.
以丙烯酰胺为功能单体,葛根素为模板分子,马来松香丙烯酸乙二醇酯为交联剂,采用循环伏安法合成了葛根素分子印迹膜,并以此为识别元件制备了葛根素电化学传感器。该传感器对葛根素具有高度的选择性和良好的敏感度,葛根素氧化峰电流与其浓度在6.0×10-8~1.6×10-3mol/L范围内呈良好的线性关系,检出限为2.0×10-8mol/L。将此传感器用于葛根素注射液和木瓜葛根片中葛根素的含量测定,回收率为97.7%~106.4%。  相似文献   

10.
A chemiluminescence (CL) array sensor for determination of benzenediol isomers simultaneously using the system of luminol–NaOH–H2O2 based on a graphene-magnetite-molecularly imprinted polymer (GM-MIP) is described. Use of graphene in the GM-MIP thus prepared is helpful to improve the adsorption capacity, while use of magnetite nanoparticles can facilitate the isolation of GM-MIP at end of their synthesis, and rendering easier the use of the polymers in the array sensor. The adsorption performance and properties were characterized. The GM-MIP was used to increase the selectivity in CL analysis. In addition, the sensor was reusable and of good selectivity and adsorption capacity. The array sensor was finally used for the determination of hydroquinone, resorcinol and catechol in waste water samples simultaneously.  相似文献   

11.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

12.
By using a molecularly imprinted polymer (MIP) as a recognition element, the design and construction of a high selective voltammetric sensor for para-nitrophenol was formed. Para-nitrophenol selective MIP and a non-imprinted polymer (NIP) were synthesized, and then used for carbon paste (CP) electrode preparation. The MIP-CP electrode showed greater recognition ability in comparison to the NIP-CP. It was shown that electrode washing after para-nitrophenol extraction led to enhanced selectivity, without noticeably decreasing the sensitivity. Some parameters affecting sensor response were optimized and a calibration curve was plotted. A dynamic linear range of 8 × 10−9 to 5 × 10−6 mol L−1 was obtained. The detection limit of the sensor was calculated as 3 × 10−9 mol L−1. Thus, this sensor was used successfully for the para-nitrophenol determination in different water samples.  相似文献   

13.
A piezoelectric quartz sensor coated with molecularly imprinted polymer (MIP) for caffeine was developed. The MIP was prepared by co-polymerizing methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) in the presence of azobis(isobutyronitrile) as initiator, caffeine as template molecule, and chloroform as solvent. The MIP suspension in polyvinyl chloride/tetrahydrofuran (6:2:1 w/w/v) solution was spin coated onto the surface of the electrode of a 10 MHz AT-cut quartz crystal. The sensor exhibited a linear relationship between the frequency shift and caffeine concentration in the range of 1×10–7 mg mL–1 up to 1x10–3 mg mL–1 [correlation coefficient (r)=0.9935] in a stopped flow measurement mode. It has a sensitivity of about 24 Hz/ln(concentration, mg mL–1). A steady-state response was achieved in less than 10 min. The performance characteristic of the sensor shows a promising and inexpensive alternative method of detecting caffeine. Surface studies were carried out for the reagent phase of the sensor using SEM, AFM, and XPS analysis in order to elucidate the imprinting of the caffeine molecule. The SEM micrograph, AFM image, and XPS spectra confirmed the removal of caffeine by Soxhlet extraction in the imprinting process and the rebinding of caffeine to the MIP sensing layer during measurement.  相似文献   

14.
A new molecularly imprinted polymer (MIP)–chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-l-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-l-Phe and dansyl-d-Phe were 0.025 μmol L−1 and 0.075 μmol L−1 (3σ), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-l-Phe (0.78 μmol L−1) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.  相似文献   

15.
A novel chemiluminescence (CL) microfluidic system incorporating a molecularly imprinted polymer (MIP) preconcentration step was used for the determination of chloramphenicol in honey samples. The MIP was prepared by using chloramphenicol as the template, diethylaminoethyl methacrylate (DAM) as the function monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, 2, 2′-dimethoxy-2-phenylacetophenone (DMPA) as the free radical initiator and toluene and dodecanol as the solvent. The MIP was pre-loaded into a 10 mm long, 2 mm wide and 150 μm deep channel in a planar glass microfluidic device. When the sample containing chloramphenicol was introduced into the microfluidic device it was first preconcentrated on the MIP then detected by an enhancement effect on the chemiluminescence reaction of tris(2, 2′-bipyridyl) ruthenium(II) with cerium(IV) sulphate in sulphuric acid. A micro-syringe pump was used to pump the reagents. The CL intensity was linear in relationship to the chloramphenicol concentrations from 1.55 × 10−4 to 3.09 × 10−3 μmol L−1 (r2 = 0.9915) and the detection limit (3σ) and the quantitation limit (10σ) were found to be 7.46 × 10−6 and 2.48 × 10−5 μmol L−1, respectively. This method offered a high selectivity and sensitivity for quantitative analysis of chloramphenicol in the honey samples.  相似文献   

16.
三氯生分子印迹传感器的制备及其性能研究   总被引:1,自引:0,他引:1  
应用分子印迹技术, 以邻苯二胺为功能单体、三氯生为模板, 用循环伏安法在玻碳电极表面合成了性能稳定的三氯生分子印迹聚合膜, 并用方波伏安法对此印迹传感器进行了分析应用研究.  相似文献   

17.
An on-line supported liquid membrane-piezoelectric detection system, based on a molecularly imprinted polymer (SLM-QCM-MIP) manifold, has been developed and applied to the quantitative determination of vanillin in food samples. The analyte is extracted from a donor phase into the hydrophobic membrane, and then back extracted into a second aqueous phase used as the acceptor solution. The quantification of vanillin was performed using a quartz crystal microbalance modified with a molecularly imprinted polymer (MIP). The method shows a linear range between 5 and 65 μM, with a relative standard deviation of ±4.8% (at 5 μM). The method was validated by analysing food samples and comparing the results with an SLM based on spectrophotometric quantification.  相似文献   

18.
A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0–100 μmol L−1 with a detection limit of 1.6 μmol L−1. Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2–111.8%, showing a promising potential in practical application.  相似文献   

19.
A novel and simple chemiluminescence (CL) method has been developed and validated for determination of metformin. This method is based on hydroxyl radical chemiluminescence—the hydroxyl radical generated by reaction of Cu(II) and hydrogen peroxide oxidizes rhodamine B (RhB) to produce weak CL which can be enhanced by metformin. At the same time, metformin molecularly imprinted polymer (MIP) was synthesized. After enrichment based on the selectivity of metformin-MIP, the CL method was successfully applied to the determination of metformin in human serum. The linear range was from 1.0×10−8 to 1.0×10−6 g mL−1 and the detection limit was 4×10−9 g mL−1. The relative standard deviation at 2.0×10−7 g mL−1 by use of MIP was 3.67% (n=7).  相似文献   

20.
A novel method to prepare surface plasmon resonance(SPR) sensor chips based on grafted imprinted polymer is explored. Benzophenone photografting system is used to grow molecularly imprinted polymer(MIP) films from the modified surface of gold substrate.The surface morphology and thickness of MIP films were investigated by scanning electronic microscope(SEM).The adsorption properties of sensor chip were studied by SPR spectroscopy.The results demonstrate that nano-MIP films can be constructed on the surface of gold substrate with the good adsorption of template molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号