共查询到20条相似文献,搜索用时 15 毫秒
1.
De An Song Rong Ning Liang Rui Ming Zhang Jia Wang Ding Jun Zhang Wei Qin 《中国化学快报》2010,21(11):1378-1381
A novel potentiometric detection strategy based on functionalized magnetic nanoparticles has been developed for rapid and sensitive sensing of polyions. Highly dispersed magnetic nanoparticles coated with ion exchanger and plasticizer could promote an in situ cooperative ion-pairing interaction between the ion exchanger and the polyion analyte in sample solution by dramatically reducing the mass-transfer distance. With applying a magnetic field, the nanoparticles can be attached to the surface of ion exchanger free polymeric membrane. The observed potential signals are related to the polyion concentrations. The proposed polymeric membrane electrode exhibits a linear relationship between the greatest potential response slope (dE/dt) and the logarithm of protamine concentration in the range of 0.05−5 μg/mL with a lower detection limit of 0.033 μg/mL. 相似文献
2.
The novel surface molecularly imprinted polymer (MIP) with 2‐nitrophenol (2‐NP) as the template has been prepared and used as the adsorbent for the solid‐phase extraction (SPE). The selectivity of the polymer was checked toward several selected nitrophenols (NPs) such as 2‐NP, 3‐nitrophenol (3‐NP), 4‐nitrophenol (4‐NP) and 2,4,6‐trichlorophenol (2,4,6‐TCP). Under the optimized conditions, high sensitivity (detection limits: 0.07–0.12 ng/mL) and good reproducibility of analytes (2.3–4.8% for four cycles) were achieved. Then, the method was applied for the analysis of selected phenols in spiked tap, lake and river water samples. High recoveries (>83.3%) for nitrophenols (NPs) were obtained, but lower recoveries (<63.4%) were achieved for 2,4,6‐TCP. The method was found to be linear in the range of 1–300 ng/mL with correlation coefficients (R2) greater than 0.99 and repeatability relative standard deviation (RSD) below 7.2% in all cases. For analysis of 120 mL water samples, the method detection limits (LODs) ranged from 0.10 to 0.22 ng/mL and the limit of quantification (LOQs) from 0.33 to 0.72 ng/mL. These results showed the suitability of the MIP‐SPE method for the selective extraction of a group of structurally related isomeric compounds. 相似文献
3.
In this paper, a new ionic‐liquid‐functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron‐methyl, prosulfuron, pyrazosulfuron‐ethyl, chlorimuron‐ethyl and triflusulfuron‐methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1–50 μg L?1 and the LODs were 0.053–0.091 μg L?1. Under the optimum conditions, the enrichment factors of the method were 1155–1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river). 相似文献
4.
In this paper, a new separation sorbent of magnetic chitosan microsphere was prepared by means of suspension process using magnetic-Fe(3)O(4) nanoparticles as magnetic material and glutaraldehyde as the cross-linker. The morphology and properties of magnetic chitosan microspheres were characterized by FT-IR, SEM and adsorption test, and the results showed that they had good recognition, high selective ability and fast adsorption-desorption dynamics for estriol (E3), 17β-estradiol (E2) and diethylstilbestrol (DES). Applying this material as SPE sorbent, a method for separation, enrichment and analysis of estrogens in samples coupled with HPLC was developed. Under the optimized condition, the detection limit (S/N=3) for three estrogens was 3.2-20.1 ng/L, and the RSD for five replicate extractions of 50 μg/L E3, E2 and DES was 4.6-8.3%. The blank river water spiked with E3, E2 and DES at 0.05 and 0.2 mg/L levels were extracted and determined by the developed method with good recoveries ranging from 85.5 to 103.7%. 相似文献
5.
An amino-functionalized magnetic covalent organic framework composite TpBD-(NH2)2@Fe3O4 (Tp=Tp1,3,5-triformylphloroglucinol, BD-(NH2)2 is 3,3',4,4'-biphenyltetramine) was prepared by post-synthesis modification. Due to its abundant benzene rings and amino groups, large specific surface area and porous structure, the prepared TpBD-(NH2)2@Fe3O4 exhibits high extraction efficiency toward sulfonylurea herbicides. Based on this, a new method of magnetic solid-phase extraction with TpBD-(NH2)2@Fe3O4 as the sorbent combined with high-performance liquid chromatography and ultraviolet detection was developed for trace analysis of sulfonylurea herbicides in environmental water, soil and tobacco leaves samples from tobacco land. Under the optimized conditions, the limits of detection within 0.05–0.14 μg/L were achieved with a high enrichment factor of 217-260-fold, and the relative standard deviations were 4.9–7.5% (n = 7, c = 0.5 μg/L). The linear range was around three orders of magnitude with the square of correlation coefficient higher than 0.9936. The method was applied to analyze five sulfonylurea herbicides in the environmental water, soil, and tobacco leave samples collected from tobacco land. No sulfonylurea herbicides were detected in these samples. The recoveries of target sulfonylurea herbicides in spiked environmental water, soil, and tobacco leaf samples were found in the range of 90.7–104, 70.7–99.0, and 59.3–97.8%, respectively. The results illustrate that the established TpBD-(NH2)2@Fe3O4-magnetic solid-phase extraction- high-performance liquid chromatography–ultraviolet detection method is efficient for the analysis of trace sulfonylurea herbicides in environmental samples. 相似文献
6.
Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples 总被引:1,自引:0,他引:1
A graphene-based magnetic nanocomposite was synthesized and used for the first time as an effective adsorbent for the preconcentration of the five carbamate pesticides (metolcarb, carbofuran, pirimicarb, isoprocarb and diethofencarb) in environmental water samples prior to high performance liquid chromatography-diode array detection. The properties of the magnetic nanocomposite were characterized by scanning electron microscopy and X-ray diffraction. This novel graphene-based magnetic nanocomposite showed great adsorptive ability towards the analytes. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid some of the time-consuming experimental procedures related to the traditional solid phase extraction. Various experimental parameters that could affect the extraction efficiencies have been investigated. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 474 to 868. A linear response was achieved in the concentration range of 0.1-50 ng mL(-1). The limits of detection of the method at a signal to noise ratio of 3 for the pesticides were 0.02-0.04 ng mL(-1). Compared with the dispersive liquid-liquid microextraction and the ultrasound-assisted surfactant-enhanced emulsification microextraction, much higher enrichment factors and sensitivities were achieved with the developed method. The method has been successfully applied for the determination of the carbamate pesticides in environmental water samples. 相似文献
7.
Selective extraction of berberine from Cortex Phellodendri using polydopamine‐coated magnetic nanoparticles 下载免费PDF全文
Hai‐Li Shi Shu‐Lin Peng Jun Sun Yi‐Ming Liu Yuan‐Ting Zhu Lin‐Sen Qing Xun Liao 《Journal of separation science》2014,37(6):704-710
A new extraction agent featuring dopamine self‐polymerized on magnetic Fe3O4 nanoparticles has been successfully synthesized and evaluated for the SPE of berberine from the extract of the traditional Chinese medicinal plant, Cortex Phellodendri. The nanoparticles prepared possessed a core–shell structure and showed super‐paramagnetism. It was found that these polydopamine‐coated nanoparticles exhibited strong and selective adsorption for berberine. Among the chemical components present in C. Phellodendri, only berberine was adsorbed by the nanoparticles and extracted by a following SPE procedure. Various conditions such as the amount of polydopamine‐coated nanoparticles, desorption solvent, desorption time and equilibrium time were optimized for the SPE of berberine. The purity of berberine extracted from C. Phellodendri was determined to be as high as 91.3% compared with that of 9.5% in the extract. The established SPE protocol combined advantages of highly selective enrichment with easy magnetic separation, and proved to be a facile efficient procedure for the isolation of berberine. Further, the prepared polydopamine‐coated magnetic nanoparticles could be reused for multiple times, reducing operational cost. The applicability and reliability of the developed SPE method were demonstrated by isolating berberine from three different C. Phellodendri extracts. Recoveries of 85.4–111.2% were obtained with relative standard deviations ranging from 0.27–2.05%. 相似文献
8.
Guangzhu Li Chao Geng Zhuan Li Xi Tian Shengshu Ai 《International journal of environmental analytical chemistry》2017,97(7):657-672
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples. 相似文献
9.
R. Failor L. Belovodsky V. Gaevoy A. Golubev 《Journal of Radioanalytical and Nuclear Chemistry》1998,235(1-2):201-206
We have developed a thermal vacuum desorption process to rapidly extract water from environmental samples for tritium analysis.
Thermal vacuum desorption allows for extraction of the moisture from the sample within a few hours in a form and quantity
suitable for liquid scintillation counting and allows detection of tritium at the levels of <2 Bq/l of milk, <0.5 Bq/g of
vegetation, and <0.5 Bq/g of soil. We developed a prototype unit that can process batches of twenty or more samples within
24 hours. Early data shows that a high percentage of water is extracted reproducibly without enrichment or depletion of the
tritium content. The quench coefficient of the extracted water is low allowing for accurate, direct liquid scintillation counting.
In most samples, good comparison has been observed with results using freeze-dry lyophilization as the water extraction method 相似文献
10.
双酚类化合物作为一类内分泌干扰物广泛存在于环境介质中,经过多种途径迁移至人体后,可对人体产生内分泌毒性、细胞毒性、基因毒性、生殖毒性、二噁英毒性和神经毒性,已被加拿大政府风险评估识别为进一步优先控制名录。随着环境领域对双酚类化合物的广泛关注,相关研究工作逐渐向水、沉积物、灰尘和生物样品等多介质开拓。但是,由于不同环境样品在基质复杂性和污染物浓度水平等方面存在显著差异,开发提取效率高、净化选择性好、普适性强、操作简单、高通量的提取和净化方法,有助于实现环境介质中双酚类化合物的高灵敏、批量检测。近年来,新型前处理技术发展迅速,尤其是固相萃取技术,在双酚类化合物提取与净化方面取得了长足的发展,不仅在一定程度上克服了传统提取净化方法存在的耗时、耗力和耗溶剂等不足,而且为新型污染物分析提供了更多的技术支持。该文简述了典型双酚类化合物的理化性质、用途用量和环境危害,重点围绕新型固相萃取吸附剂开发和固相萃取模式转变两个方面,总结了固相萃取在双酚类化合物提取净化方法方面取得的进展。商品化固相萃取产品普适性强,在环境监测领域应用范围较广,适用于双酚类化合物的产品种类有限;新型吸附剂研发聚焦吸附容量(如介孔硅材料、碳纳米材料、金属-有机框架材料、环糊精)和选择性(如分子印迹聚合物和混合模式离子交换聚合物)两个方面,种类多样化可满足不同检测需求;越来越多的高灵敏分析仪器不断推向市场,为适应新的发展形势,固相萃取模式正逐渐向微型化、自动化、简易化等方向发展,如QuEChERS、固相微萃取、磁固相萃取等。 相似文献
11.
A novel type of superparamagnetic silica-coated (Fe3O4/SiO2 core/shell) magnetite nanoparticle modified by surfactants has been successfully synthesized and was applied as an effective sorbent material for the pre-concentration of several typical phenolic compounds (bisphenol A (BPA), 4-tert-octylphenol (4-OP) and 4-n-nonylphenol (4-NP)) from environmental water samples. Compared with pure magnetic particles, a thin and dense silica layer would protect the iron oxide core from leaching out in acidic conditions. In order to enhance their adsorptive tendency towards organic compounds, cetylpyridinium chloride (CPC) or cetyltrimethylammonium bromide (CTAB) were added, which adsorbed on the surface of the Fe3O4/SiO2 nanoparticles (Fe3O4/SiO2 NPs) and formed mixed hemimicelles. Main factors affecting the adsolubilization of analytes were optimized and comparative study on the use of CPC and CTAB-coated Fe3O4/SiO2 NPs mixed hemimicelles-based SPE was also carried out. CPC-coated Fe3O4/SiO2 NPs system was selected due to lower elution volume required and more effective adsorption of the target compounds. Under selected conditions, concentration factor of 1600 was achieved by using this method to extract 800 mL of different environmental water samples. The detection limits obtained for BPA, 4-OP and 4-NP with HPLC-FLD were 7, 14, and 20 ng/L, respectively. 相似文献
12.
《Journal of separation science》2017,40(12):2638-2644
The preparation of molecularly imprinted core–shell magnetic nanoparticles and their subsequent use in the solid‐phase extraction of thiabendazole from citrus sample extracts is described. Molecularly imprinted core–shell magnetic nanoparticles were prepared by the precipitation copolymerization of the imprinting polymerization mixture on the surface of vinyl‐modified silica magnetic nanoparticles and were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The obtained molecularly imprinted core–shell magnetic nanoparticles exhibited a high selectivity for thiabendazole and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of thiabendazole from citrus sample extracts and final determination by high‐performance liquid chromatography with fluorescence detection. The detection limit was 0.2 mg/kg, far lower than the maximum residue limit established within the European Union for thiabendazole in citrus samples. 相似文献
13.
《Journal of separation science》2017,40(2):424-430
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, vibrating sample magnetometry, X‐ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2–97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra‐ and inter‐day precisions were in the range of 1.7–2.9% and 3.4–5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples. 相似文献
14.
Atomic spectroscopy is the most popular approach to determine the presence of heavy metals in the environment. Heavy metals are potentially toxic and have various negative effects on many living organisms, including humans. With the rapid increase in the variety of industries and human activities, large amounts of heavy metals are released into the atmosphere, water, and soil. Heavy metal analysis of environmental samples is very important for determining the exposure limits. Environmental samples are highly complex matrices, and various sample preparation techniques have been developed for the extraction of heavy metals from them, including magnetic solid-phase extraction (MSPE). The use of MSPE in heavy metal analysis has recently gained significant attention owing to a number of advantages. MSPE technique overcomes main issues such as phase separation, handling, and column packing. The use of magnetic adsorbents in sample preparation has grown over the past few years, making MSPE a promising technique for sample preparation. The objective of this review article is to provide the latest applications of MSPE coupled with atomic spectroscopy for heavy metal determination in environmental samples. In addition, new magnetic adsorbents and their analytical merits are emphasized. 相似文献
15.
利用多巴胺(DA)中的儿茶酚基团能与金属有机骨架晶体(MOFs)中金属离子螯合的原理,以ZIF-67为模板,经DA蚀刻-自聚合形成具有孔洞结构的聚多巴胺(PDA)壳层,制备了磁性-MOFs-PDA(Fe3O4@Z67D)新型材料。多种表征手段验证了材料的形貌、结构和性能。新型材料具有亲水性的表面、纳米级的孔径,以及良好的磁响应,被用作磁固相萃取吸附剂。结合高效液相色谱分析手段,建立了萃取检测亚甲蓝(MB)和结晶紫(CV)两种阳离子染料的新方法。在最优的萃取和色谱分析条件下,MB和CV的线性范围分别为0.5~200μg/L和0.01~50μg/L,检出限分别为0.04μg/L和0.008μg/L,对两种染料的富集因子分别为777和688。新型材料重复使用10次,其萃取性能未见发生变化。该方法成功应用于检测淡水鱼养殖用水中痕量的MB和CV,加标回收率为82.0%~109.0%, RSD低于2.9%。 相似文献
16.
Qi Zhao Tianyu Zhou Huiyu Li Haochi Liu Ning Huang Yuan Xu 《International journal of environmental analytical chemistry》2013,93(11):1049-1062
ABSTRACTIn this work, a magnetic molecularly imprinted polymer (Fe3O4@SiO2@MIPs) was prepared via a surface-imprinted method for the determination of the triazines in environmental water samples combined with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer showed that the Fe3O4@SiO2@MIPs was successfully synthesised and exhibited superparamagnetism. The isotherm adsorption, selectivity and adsorption kinetics experiments showed that the Fe3O4@SiO2@MIPs exhibited excellent specific recognition and fast adsorption equilibrium for triazines. The adsorption process is spontaneous and endothermic. The isotherm adsorption was consistent with Scatchard model and adsorption kinetic fit pseudo-second-order kinetic model. Under the optimised adsorption conditions, the Fe3O4@SiO2@MIPs was directly used to selectively enrich six triazines in environmental water samples. The enrichment volume was up to 500 mL, and the matrix effects were down to 0.7–12.4%. The built method has excellent linearities in the range of 0.25–500 ng L?1 with R2 in the range of 0.998–0.999, lower limit of detections (0.02–0.08 ng L?1) and higher precision (2.4–7.2%). The Fe3O4@SiO2@MIPs is expected to be widely applied to the direct enrichment of triazines in bulk environmental water samples. 相似文献
17.
Stepnowski P 《Analytical and bioanalytical chemistry》2005,381(1):189-193
Owing to their favorable properties, ionic liquids have recently gained recognition as possibly environmentally benign solvents. Now among the most promising industrial chemicals, they have already been labeled green, but this appellation seems due entirely to their very low vapor pressure. This growing interest in the various applications of ionic liquids will soon result in their presence in the environment. Therefore, reliable analytical tools for the environmental analysis of ionic liquids need to be developed urgently. This paper presents a newly developed analytical procedure for the enrichment of 1-alkyl- and 1-aryl-3-methylimidazolium ionic liquids from water samples. The method is based on cation exchange solid-phase extraction followed by selective elution. Pre-concentrated samples are subjected to high-performance liquid chromatography (HPLC) with an advanced methodology for qualitative and quantitative analysis. The overall procedure was verified by using standard spiked samples of tap water, seawater, and freshwater. 相似文献
18.
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe3O4 NPs not only avoids the dissolving of Fe3O4 NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1 g Fe3O4/Al2O3 NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 μg L−1, respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe3O4/Al2O3 NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples. 相似文献
19.
A reversed-phase high-performance liquid chromatographic (HPLC) method has been developed and validated for the determination of insulin in nanoparticulate dosage forms. Its application for the development and characterization of insulin-loaded nanoparticulates composed of polyelectrolytes has also been carried out. A reversed-phase (RP) C18 column and gradient elution with a mobile phase composed of acetonitrile (ACN) and 0.1% aqueous trifluoroacetic acid (TFA) solution at a flow rate of 1 mL/min was used. Protein identification was made by UV detection at 214 nm. The gradient changed from 30:70 (ACN:TFA, v/v) to 40:60 (v/v) in 5 min followed by isocratic elution at 40:60 (v/v) for a further five minutes. The method was linear in the range of 1-100 microg/mL (R2 = 0.9996), specific with a good inter-day and intra-day precision based on relative standard deviation values (less than 3.80%). The recovery was between 98.86 and 100.88% and the detection and quantitation limits were 0.24 and 0.72 microg/mL, respectively. The method was further tested for the determination of the association efficiency of insulin to nanoparticulate carriers composed of alginate and chitosan, as well as its loading capacity for this protein. Encapsulant release under simulated gastrointestinal fluids was evaluated. The method can be used for development and characterization of insulin-loaded nanoparticles made from cross-linked chitosan-alginate. 相似文献
20.
《Journal of separation science》2018,41(3):678-688
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (n = 3) and 1.1–5.5% (n = 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples. 相似文献