首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The value of the thermodynamic interaction parameter, χeff, for star–star polybutadiene blends was determined with small‐angle neutron scattering. Blends in which the stars have the same number of arms and blends in which the stars have different numbers of arms are investigated. For star–star isotopic blends with components having the same number of arms, the presence of the junction point of the star leads to a value of χeff that is larger than that for an analogous linear–linear isotopic blend. However, changes in the value of χeff resulting from small dissimilarities in the number of arms of the two components in the isotopic star–star blends were too small to resolve. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 247–257, 2003  相似文献   

2.
The miscibilities of ternary copolymer blends prepared from poly(styrene-stat-acrylonitrile), poly(styrene-stat-methyl methacrylate), and poly(methyl methacrylate-stat-acrylonitrile) were predicted by calculating the interaction parameter, χblend, for various blend combinations, from the corresponding binary segmental interaction parameters estimated from previous work. Binodal and spinodal curves were calculated using the Flory-Huggins theory and it was observed that the most accurate estimate of the boundary between miscible and immiscible blends was given by the spinodal. It has also been demonstrated that in some of the ternary blends with fixed copolymer compositions the miscibility of the blend can be altered by changing the ratio of the three components in the mixture. Conditions for miscibility in this ternary system, and possibly a general feature of all such systems, are (a) that at least two of the binary interaction parameters χij are less than the critical value χcrit, while the third should not be too much larger, that is, one of the copolymers may act as a compatibilizer for the other two copolymers, (b) that the difference Δχ = /χ12 ? χ13/ is small. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
This study [Part II of a series dealing with the compatibility of polyalkyleneoxides with poly(vinyl chloride)] examines blends of PVC with poly(propylene oxide) (PPrO) and poly(tetra-methylene oxide) (PTMO), covering the entire composition range. Morphological, dynamic mechanical and thermal properties investigated indicate that PVC/PPrO blends are incompatible, whereas the PVC/PTMO system shows miscibility in the melt. For this polyblend and at high polyether compositions where the Hoffman–Weeks analysis can be applied, Tm equilibrium data allow the determination of the thermodynamic interaction parameter, χ12 = ?0.15. Experimental compatibility data of all polyether-PVC pairs investigated in Parts I and II are also used to test various blend miscibility prediction schemes, using solubility parameter theory and recent theory on copolymer-copolymer miscibility.  相似文献   

4.
The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer–polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 95–104, 1998  相似文献   

5.
The miscibility and thermal properties of polyethylene oxide(PEO)/oligoester resin (OER) blends and PEO/crosslinked polyester (PER) blends were studied by differential scanning calorimetry (DSC). The effect of quenching process on the crystallization behavior of PEO for these two systems were investigated and discussed in details. It has been found that a single, composition dependent glass transition temperature (Tg) was observed for all the blends, indicating that the two systems are miscible in the amorphous state at overall compositions. From the melting point depression of PEO, the interaction parameter χ12 for PEO/OER blends and that for PEO/PER blends were found to be −1.29 and −2.01, respectively. The negative values of χ12 confirmed that both PEO/OER blends and PEO/PER blends are miscible in the molten state. Quenching process has a greater hindrance on the crystallization of PEO/OER blends than on that of PEO/PER blends. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3161–3168, 1997  相似文献   

6.
The amphiphilic association structures in the system water-phenethyl alcohol and two triblock copolymers (L101: EO4.5PO59EO4.5 and F108: EO132.5PO50EO132.5) (EO=ethylene oxide, PO=propylene oxide) were investigated by optical observation, measurements of surface tension, quasi-elastic light scattering and electric conductance. The results showed a most drastic influence of small amounts of the long polar chain block copolymer on the phase regions in the system water-phenethyl alcohol - (EO)5(PO)56(EO)5 with 0.1% of the long polar chain compound added to the short chain one giving a most pronounced change in the phase regions.  相似文献   

7.
A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene‐co‐butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST‐BA = 0.087 and χEMA‐BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000  相似文献   

8.
The thermal properties of blends of polycarbonate (PC) and poly(ε‐caprolactone) (PCL) were investigated by differential scanning calorimetry (DSC). From the thermal analysis of PC‐PCL blends, a single glass‐transition temperature (Tg) was observed for all the blend compositions. These results indicate that there is miscibility between the two components. From the modified Lu and Weiss equation, the polymer–polymer interaction parameter (χ12) of the PC‐PCL blends was calculated and found to range from −0.012 to −0.040 with the compositions. The χ12 values calculated from the Tg method decreased with the increase of PC weight fraction. By taking PC‐PCL blend as a model system, the values of χ12 were compared with two different methods, the Tg method and melting point depression method. The two methods are in reasonably good agreement for the χ12 values of the PC‐PCL blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2072–2076, 2000  相似文献   

9.
A differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) study of miscibility in blends of the semicrystalline polyester poly(3-hydroxybutyrate) (PHB) and amorphous monomer epoxy DGEBA (diglycidyl ether of bisphenol A) was performed. Evidence of the miscibility of PHB/DGEBA in the molten state was found from a DSC study of the dependence of glass transition temperature (Tg) as a function of the blend composition and isothermal crystallization, analyzing the melting point (Tm) as a function of blend composition. A negative value of Flory–Huggins interaction parameter χPD was obtained. Furthermore, the lamellar crystallinity in the blend was studied by SAXS as a function of the PHB content. Evidence of the segregation of the amorphous material out of the lamellar structure was obtained. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
We tested forward recoil spectrometry (FRES) as a method to determine miscibility by measuring coexistence compositions in binary polymer blends. In this study, equilibrium phase compositions were determined for a compositionally symmetric poly(styrene‐ran‐methyl methacrylate) random copolymer (S0.49r‐MMA) and two homopolymers, deuterated polystyrene (dPS) and deuterated poly(methyl methacrylate) (dPMMA). Sample preparation, film dewetting, and beam damage were addressed, and the results for these polymer blends were in good agreement with those obtained through other experimental techniques. Deuteration had a strong effect on the miscibility of the dPS/S0.49r‐MMA and dPMMA/S0.49r‐MMA blends, to the extent that the asymmetric miscibility observed separately for the PS/S0.49r‐MMA and PMMA/S0.49r‐MMA blends was not found. Although this deuteration effect may limit the applicability of FRES for some polymer systems, the accuracy with which phase compositions can be determined with FRES makes it an attractive alternative to other less quantitative methods for investigating blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1547–1552, 2000  相似文献   

11.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

12.
A new model has been developed to calculate the areal chain density of entanglements (Σeff) at partially miscible polymer–polymer interfaces. The model for Σeff is based on a stochastic approach that considers the miscibility of the system. The values agree between Σeff calculated from the model and literature values for the reinforced interfaces. Using Σeff calculated from the model, the interfacial width, and the average distance between entanglements, an equation for the fracture energy of nonreinforced polymer interfaces is proposed. This equation is used to model the transition from chain pullout to crazing. As a function of system miscibility, the model for Σeff also accurately predicts a maximum in mode I fracture energy (Gc) as a result of the transition from gradient‐driven to miscibility‐limited interdiffusion, which is observed experimentally. As Σeff increases, the fracture energy increases accordingly. Compared with a recent model developed by Brown, the new model correctly predicts a reduced Gc (attributed to chain pullout) when the interfacial width is less than the average distance between entanglements. Theoretical predictions of the change in fracture energy with respect to interfacial width agree with the experimental measurements. Finally, it is postulated that the use of a miscibility criterion for Gc may reveal the universal nature of the pullout to crazing transition. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2292–2302, 2002  相似文献   

13.
The miscibility of blends of phenolphthalein poly(ether ether sulfone) (PES-C) and poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. Differential scanning calorimetry (DSC) studies showed that the PES-C/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed a single, composition-dependent glass transition temperature (Tg), and thus that PES-C and PEO are miscible in the amorphous state at all compositions at lower temperature. At higher temperature, the blends underwent phase separation, and the PES-C/PEO blend system was found to display a lower critical solution temperature (LCST) behavior. The phase separation process in the blends has also been investigated by using DSC. Annealed at high temperatures, the PES-C/PEO blends exhibited significant changes of thermal properties, such as the enthalpy of crystallization and fusion, temperatures of crystallization and melting, depending on blend composition when phase separation occurred. These changes reflect different characteristics of phase structure in the blends, and were taken as probes to determine phase boundary. From both the thermal analysis and optical microscopy, the phase diagram of the blend system was established. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1383–1392, 1997  相似文献   

14.
The miscibility behavior of poly(2‐ethyl‐2‐oxazoline) (PEOx)/poly(vinyl phenyl ketone hydrogenated) (PVPhKH) blends was studied for the entire range of compositions. Differential scanning calorimetry and thermomechanical analysis measurements showed that all the PEOx/PVPhKH blends studied had a single glass‐transition temperature (Tg). The natural tendency of PVPhKH to self‐associate through hydrogen bonding was modified by the presence of PEOx. Partial IR spectra of these blends suggested that amide groups in PEOx and hydroxyl groups in PVPhKH interacted through hydrogen bonding. This physical interaction had a positive influence on the phase behavior of PEOx/PVPhKH blends. The Kwei equation for Tg as a function of the blend composition was satisfactorily used to describe the experimental data. Pure‐component pressure–volume–temperature data were also reported for both PEOx and PVPhKH. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 636–645, 2004  相似文献   

15.
In this article, the miscibility of poly(ε‐caprolactone) (PCL) with poly(styrene‐co‐acrylonitrile) (SAN) containing 25 wt % of acrylonitrile is studied from both a qualitative and a quantitative point of view. The evidences coming from thermal analysis (differential scanning calorimetry) demonstrate that PCL and SAN are miscible in the whole range of composition. The Flory interaction parameter χ1,2 was calculated by the Patterson approximation and the melting point depression of the crystalline phase in the blends; in both cases, negative values of χ1,2 were found, confirming that the system is miscible. The interaction parameter evaluated within the framework of the mean field theory demonstrates that the miscibility of PCL/SAN blends is due to the repulsive interaction between the styrene and acrylonitrile segments in SAN. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
The influence of shear flow, especially the timing for the application of shearing, was examined to enhance the selectivity for the preparation of poly(p‐oxybenzoyl) (Pp‐OB) by using hydrodynamically induced phase separation during polymerization of 4‐(4‐acetoxybenzoyloxy)benzoic acid (p‐ABAD) and m‐acetoxybenzoic acid (m‐ABA). The polymers containing few m‐oxybenzoyl (m‐OB) moieties were obtained as precipitates even at high content of m‐OB moiety in feed (χf) under shear flow. The content of m‐OB moiety in the precipitates (χp) prepared under shearing throughout the polymerization at the shear rate (γ) of 489 s?1 was 6.3 mol % even at χf of 60 mol %. Especially, the Pp‐OB was obtained as the precipitates at χf of less than 50 mol %. The timing of the application of the shearing influenced the selectivity significantly, and the shearing just after the precipitation of the oligomers started was quite efficient to enhance the selectivity more. The χp of the precipitates prepared with shearing at γ of 489 s?1 just after the precipitation was only 3.9 mol % even at χf of 60 mol %. The shear flow reduced the difference in the reactivity between p‐ABAD and m‐ABA, resulting in the decrease in the selectivity with regard to the formation of p‐oxybenzoyl homo‐oligomer. However, the shear flow enhanced the difference in the miscibility between homo‐oligomers and co‐oligomers. This change in the miscibility by shear flow brought about the more rapid precipitation of homo‐oligomers, leading to the enhancement of the selectivity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Foaming properties of aqueous solutions of the nonionic surfactant polyoxyethylene dodecyl ether (C12EO n ) were studied at 298 K. Four different EO chain lengths, namely C12EO3, C12EO5, C12EO7, and C12EO9, were considered. The foams obtained from C12EO3 or C12EO5 were extraordinary stable retaining a constant volume for more than 20 h. The presence of lamellar liquid crystalline phases was mainly responsible for the super-stable aqueous foams.  相似文献   

18.
The melt miscibility of two series of poly(ethylene‐r‐ethylethylene) (PEExx) polymers with different percentages (xx) of ethylethylene (EE) repeat units was examined with small‐angle neutron scattering (SANS). The first series consisted of comb/linear blends in which the first component is a heavily branched comb polymer (B90) containing 90% EE and an average of 62 long branches with a weight‐average molecular weight (MW) of 5.5 kg/mol attached to a backbone with MW = 10.0 kg/mol. The comb polymer was blended with six linear PEExx copolymers, all of which had MW ≈ 60 kg/mol and EE percentages ranging from 55 to 90%; they were denoted L55 to L90, with the number referring to the percentage of EE repeat units. The second series consisted of linear/linear blends; the first component, with MW = 220 kg/mol and 90% EE, was denoted L90A, and the second components were the same series of linear polymers, with MW ≈ 60 kg/mol and various EE compositions. The concentrations investigated were 50/50 w/w, except for the blend of branched B90 and linear L90 (both components were 90% EE), for which 25/75 and 75/25 concentrations were also examined. The SANS results indicated that for the comb/linear blends, only the dB90/L90 blends were miscible, whereas the other five blends phase‐separated; for the linear/linear blends, dL90A/L83 and dL90A/L78 were miscible, whereas the other three blends were immiscible. These results indicate that long‐chain branching significantly narrowed the miscibility window of these polyolefin blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 466–477, 2002; DOI 10.1002/polb.10102  相似文献   

19.
Miscibility behavior of poly(3-hydroxybutyrate) [PHB]/poly(vinylidene chloride-co-acrylonitrile) [P(VDC-AN)] blends have been investigated by differential scanning calorimetry and optical microscopy. Each blend showed a single Tg, and a large melting point depression of PHB. All the blends containing more than 40% PHB showed linear spherulitic growth behavior and the growth rate decreased with P(VDC-AN) content. The interaction parameter χ12, obtained from melting point depression analysis, gave the value of −0.267 for the PHB/P(VDC-AN) blends. All results presented in this article lead to the conclusion that PHB/P(VDC-AN) blends are completely miscible in all proportions from a thermodynamic viewpoint. The miscibility in these blends is ascribed to the specific molecular interaction involving the carbonyl groups of PHB. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2645–2652, 1997  相似文献   

20.
The binary interaction energies between styrene and various methacrylates were determined from newly examined phase boundaries with lattice–fluid theory. Because the blends of polystyrene (PS) and poly(cyclohexylmethacrylate) (PCHMA) were only miscible at high molecular weights when the blends were prepared by solution casting from tetrahydrofuran, we examined the miscibility of other blends by changing the molecular weights of PS or methacrylate polymers. On the basis of the phase‐separation temperature caused by the lower critical solution temperature, the miscibility of PS with the various methacrylates appeared to be in the order PCHMA > poly(n‐propyl‐methacrylate) (PnPMA) > poly(ethyl methacrylate) (PEMA) > poly(n‐butyl‐methacrylate) (PnBMA) > poly(iso‐butyl‐methacrylate) > poly(methyl methacrylate) (PMMA) > poly(tert‐butyl methacrylate), and the branching of butylmethacrylate appeared to decrease the miscibility with PS. The interaction energies between PS with various methacrylates obtained from phase boundaries with lattice–fluid theory reached minimum value corresponding to the styrene/n‐propylmethacrylate interaction. They were in the order PnPMA < PEMA < PCHMA < PnBMA < PMMA. The difference in the order of miscibility and interaction energies might be attributed to the terms related to the compressibility. The phase‐separation temperatures calculated with the interaction energies obtained here indicated that the PS/PEMA and PS/PnPMA blends at high molecular weights were miscible, whereas the PS/PnBMA blends were immiscible at high molecular weights. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2666–2677, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号