首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic amphiphilic polymers were prepared from PEI and functional ethylene carbonates bearing cationic, hydrophobic or amphiphilic groups. The polymers are designed to exhibit antimicrobial properties. In a one-step addition, different functional ethylene carbonates were added to react with the primary amine groups of PEI. The water soluble polymers were studied regarding their ability to form soluble aggregates. Their hydrodynamic radii, their inhibition potential against proliferation of E. coli and their hemolytic potential were determined. A structure-property relationship was established by analyzing the antimicrobial activity as a function of the ratio of alkyl to cationic groups, length of the alkyl chains, and molecular weight of the PEI.  相似文献   

2.
Nine guanidinylated amphiphilic polycarbonates are rationally designed and synthesized. Each polymer has the same biodegradable backbone but different side groups. The influence of the hydrophobic/hydrophilic effect on antimicrobial activities and cytotoxicity is systematically investigated. The results verify that tuning the length of the spacer arm between the cationic guanidine group and the polycarbonate backbone is an efficient design strategy to alter the hydrophobic/hydrophilic balance without changing the cationic charge density. A spacer arm of six methylene units (CH2)6 shows the best antimicrobial activity (minimum inhibitory concentration, MIC = 40 µg mL?1 against Escherichia coli, MIC = 20 µg mL?1 against Staphylococcus aureus, MIC = 40 µg mL?1 against Candida albicans) with low hemolytic activity (HC50 > 2560 µg mL?1). Furthermore, the guanidinylated polycarbonates exhibit the ability to self‐assemble and present micelle‐like nanostructure due to their intrinsic amphiphilic macromolecular structure. Transmission electron microscopy and dynamic light scattering measurements confirm polymer micelle formation in aqueous solution with sizes ranging from 82 to 288 nm.  相似文献   

3.
To gain an understanding of the toxicity of antimicrobial polymers to human cells, their hemolytic action was investigated using human red blood cells (RBCs). We examined the hemolysis induced by cationic amphiphilicmethacrylate random copolymers, which have amino ethyl sidechains as cationic units and either butyl or methyl methacrylate as hydrophobic units. The polymer with 30 mol% butyl sidechains (B30) displayed higher hemolytic toxicity than the polymer with 59 mol% methyl sidechains (M59). B30 also induced faster release of hemoglobin from RBCs than M59. A new theoretical model is proposed based on two consecutive steps to form active polymer species on the RBC membranes, which are associated to RBC lysis. This model takes the all-or-none release of hemoglobin by the rupture of RBCs into account, providing new insight into the polymer-induced hemolysis regarding how individual or collective cells respond to the polymers.  相似文献   

4.
This work describes synthesis of antimicrobial methacrylate copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization and examines the versatility of this approach for improving chemical optimization to create potent, non‐toxic antimicrobial polymers. Specifically, this study focuses on the radical‐mediated transformation of end group of antimicrobial peptide‐mimetic polymer. RAFT polymerization using 2‐cyano‐2‐yl‐dithiobenzoate provided a statistical methacrylate copolymer consisting of aminobutyl and ethyl groups in the side chains. The following radical‐mediated modification using free radical initiators successfully transformed the ω‐end group of parent copolymer from dithiobenzoate to a cyanoisobutyl or aminoethyl cyanopentanoate group without any significant changes to the polymer molecular weight. In general, the parent polymer and variants showed a broad spectrum of activity against a panel of bacteria, but low hemolytic activity against human red blood cells. The parent copolymer with the dithiobenzoate end‐group showed highest antimicrobial and hemolytic activities as compared with other copolymers. The copolymers caused membrane depolarization in Staphylococcus aureus, while the ability of copolymers for membrane disruption is not dependent on the end‐group structures. The synthetic route reported in this study will be useful for further study of the role of polymer end‐groups in the antimicrobial activity of copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 304–312  相似文献   

5.
The synthesis and characterization of a series of poly(oxanorbornene)‐based synthetic mimics of antimicrobial peptides (SMAMPs) is presented. In the first part, the effect of different organic counterions on the antimicrobial properties of the SMAMPs was investigated. Unexpectedly, adding hydrophobicity by complete anion exchange did not increase the SMAMPs’ antimicrobial activity. It was found by dye‐leakage studies that this was due to the loss of membrane activity of these polymers caused by the formation of tight ion pairs between the organic counterions and the polymer backbone. In the second part, the effect of molecular charge density on the biological properties of a SMAMP was investigated. The results suggest that, above a certain charge threshold, neither minimum inhibitory concentration (MIC90) nor hemolytic activity (HC50) is greatly affected by adding more cationic groups to the molecule. A SMAMP with an MIC90 of 4 μg mL?1 against Staphylococcus aureus and a selectivity (=HC50/MIC90) of 650 was discovered, the most selective SMAMP to date.  相似文献   

6.
We have investigated the structure-activity relationship of cationic amphiphilic polymethacrylate derivatives in antimicrobial and hemolytic assays. The polymers were prepared by radical copolymerizations of N-(tert-butoxycarbonyl)aminoethyl methacrylate and butyl methacrylate in the presence of methyl 3-mercaptopropionate as a chain transfer agent to give precursor polymers protected with a tert-butoxycarbonyl (Boc) group. Subsequent treatment of the Boc-protected polymers with TFA affords the desired cationic random copolymers. We examined antimicrobial and hemolytic activities of a series of polymers having a wide range of mole percentage of butyl groups (0-60%) in three different molecular weight (MW) ranges. The smallest polymers (MW < 2000) showed the lowest MIC and reduced hemolytic activity compared to that of the higher MW ones. In addition, polymers containing a high percentage of butyl groups are less selective for bacterial cells than their less hydrophobic counterparts.  相似文献   

7.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

8.
 The behaviour of hydrophobically modified poly(allylammonium) chloride having octyl, decyl, dodecyl and hexadecyl side chains has been studied in aqueous solution using fluorescence emission techniques. Micropolarity studies using the I 1/I 3 ratio of the vibronic bands of pyrene show that the formation of hydrophobic microdomains depends on both the length of the side chain and the polymer concentration. The I 1/I 3 ratio of the polymers with low hydrophobe content (less than 5% mol) changes substantially when reaching a certain concentration. These changes are assigned to aggregation originating from interchain interactions. This behaviour is also confirmed by the behaviour of the monomer/excimer emission intensities of pyrenedodecanoic acid used as a probe. For polymers having dodecyl side chains and hydrophobe contents higher than 10%, aggregates are formed independently of the polymer concentration. Anisotropy measurements show that microdomains resulting from the inter- and/or intramolecular interactions are similar to those observed for cationic surfactants. Viscosity measurements show that the coil dimensions are substantially decreased for the polymers having high hydrophobe contents, indicating intramolecular associations. Received: 10 November 1999/Accepted: 7 April 2000  相似文献   

9.
A substituted poly(phenylacetylene) derivative (PPAHB) with two hydroxymethyl groups at the meta position of the side phenyl ring was examined as a conformation-switchable helical spring polymer that responds to solvent and heat stimuli in a precisely controlled manner. Intramolecular hydrogen bonds, which cause the helical structure of the polymer, were broken and re-formed by adjusting the hydrogen-bonding strength values (pKHB) of various combinations of solvents or by varying the temperature. In this process, a reversible conformational change from ciscisoid to cistransoid, accompanied by a phase transition in the form of a helix-coil transformation occurred, with the polymer exhibiting critical changes of color fading and recovery in specific environments. These results demonstrate that PPAHB can be used as either a pKHB indicator or a thermometer. The color changes of the polymer solution are described in detail based on spectroscopic analyses and thermodynamic considerations.  相似文献   

10.
Cationic conjugated oligoelectrolytes (COEs) are a class of compounds that can be tailored to achieve relevant in vitro antimicrobial properties with relatively low cytotoxicity against mammalian cells. Three distyrylbenzene-based COEs were designed containing amide functional groups on the side chains. Their properties were compared to two representative COEs with only quaternary ammonium groups. The optimal compound, COE2−3C−C3-Apropyl , has an antimicrobial efficacy against Escherichia coli with an MIC=2 μg mL−1, even in the presence of human serum albumin low cytotoxicity (IC50=740 μg mL−1) and minimal hemolytic activity. Moreover, we find that amide groups increase interactions between COEs and a bacterial lipid mimic based on calcein leakage assay and allow COEs to readily permeabilize the cytoplasmic membrane of E. coli. These findings suggest that hydrogen bond forming moieties can be further applied in the molecular design of antimicrobial COEs to further improve their selectivity towards bacteria.  相似文献   

11.
A substituted poly(phenylacetylene) derivative (PPAHB) with two hydroxymethyl groups at the meta position of the side phenyl ring was examined as a conformation‐switchable helical spring polymer that responds to solvent and heat stimuli in a precisely controlled manner. Intramolecular hydrogen bonds, which cause the helical structure of the polymer, were broken and re‐formed by adjusting the hydrogen‐bonding strength values (pKHB) of various combinations of solvents or by varying the temperature. In this process, a reversible conformational change from ciscisoid to cistransoid, accompanied by a phase transition in the form of a helix‐coil transformation occurred, with the polymer exhibiting critical changes of color fading and recovery in specific environments. These results demonstrate that PPAHB can be used as either a pKHB indicator or a thermometer. The color changes of the polymer solution are described in detail based on spectroscopic analyses and thermodynamic considerations.  相似文献   

12.
Mixed esters of hydrolyzed starch represent a new class of chemically modified natural polymers demonstrating a broad range of properties. Members of this class of polymers have both neutral aliphatic ester side chains and carboxyl-functional half-ester side chains. Use of hydrolyzed starch as the backbone polymer results in products that are considerably lower in molecular weight than whole starch derivatives, but which are still polymeric in character. Synthesis proceeds smoothly in pyridine using anhydrides as acylating agents and the pure solid mixed ester products are isolated by precipitation in water. Measurement of degree of substitution (D.S.) by NMR or hydrolysis characterizes the chemical composition of the polymers. The actual D.S. achieved in the synthesis depends upon the competition between starch and residual water for anhydrides, which can be quantitatively evaluated by monitoring the acid content of the reaction mixture. The Tg and Ts of starch mixed esters vary with both D. S. and length of the aliphatic ester side chain. As the composition changes from acetate—phthalate to butyrate—phthalate a Tg range of greater than 100°C is observed. Hydrolyzed starch mixed esters are hydrophobic and organic-soluble, but may be readily solubilized in aqueous base through the half-ester groups. Solutions show surface activity which varies according to the type and extent of substitution.  相似文献   

13.
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands–target interactions. Some newly MD-discovered aspects of the ligand’s backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.  相似文献   

14.
The antibacterial behavior of cationic polyelectrolytes is studied using model membrane experiments and in vitro bacterial investigations. The molecular interaction with lipid films is evaluated by the degree of penetration of the polymers into Langmuir monolayers of neutral or negatively charged lipids. The polymer/lipid interaction results in structural changes of the penetrated lipid layer visualized using AFM. The polymers are found to be effective in inhibiting the proliferation of E. coli, B. subtilis and S. aureus. The influence of the chemical structure on the functional behavior is related to the conformational properties. An optimum structure is identified on the basis of antibacterial and hemolytic tests as well as membrane‐destroying efficacy of the antimicrobial polymers.

  相似文献   


15.
Two copolymers, P(PCEMA-co-MMA) and P(t-BMA-block-PCEMA), were prepared via ATRP using 2-(phenoxycarbonyloxy)ethyl methacrylate (PCEMA) as reactive monomer and methyl methacrylate (MMA) or tert-butyl methacrylate (t-BMA) as co-monomers. Alternatively phenoxycarbonyloxy decorated polymethacrylates were obtained via polymer analogous reaction: P(HEMA) was reacted with phenyl chloroformate to yield P(PCEMA). The highly reactive phenoxycarbonyloxy groups were used for polymer analogous reactions with nucleophiles to obtain polymers with ionic/hydrophilic and hydrophobic side groups. Different amines with long alkyl chains or tertiary amine groups were reacted with phenoxycarbonyloxy decorated polymers and subsequently reacted with methyl iodide to obtain amphipathic polymers with bacteriostatic properties.  相似文献   

16.
Three molecules of 5-(bromoacetyl) salicylate ( 1 ) complexed to Fe(III) ion were crosslinked with poly(ethylenimine) (PEI) in DMSO by alkylation of amino groups of PEI with 1 , leading to the formation of Fe(Sal)3PEI, a water-soluble polymer. Several other derivatives including the immobilized form were also prepared. Examination of the values of log Kf for the PEI derivatives indicated that each Fe(III) binding site in Fe(Sal)3PEI contains three salicylate moieties. In addition, the log Kf revealed that the effective molarity (EM) of the salicylate groups contained in the Fe(III) binding site is ca. 1000M. The high EM value shows that the geometry of the coordination sphere is well conserved during the crosslinkage with PEI of 1 preassembled around Fe(III) ion. In view of the EM value and the pKa values of salicylic phenols in apo(Sal)3-PEI, the metal-free form, the three salicylate groups of each Fe(III) binding site appear to occupy proximal positions leading to effective cooperation in Fe(III) binding. Fast, strong, and selective binding of Fe(III) ion by the binding site comprising three salicylate moieties was demonstrated. In addition, rapid demetalation of the resulting complexes as well as chemical stability of the immobilized chelating agents built on PEI were achieved. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1197–1210, 1997  相似文献   

17.
A general theory of non-Gaussian elasticity is presented for real polymeric chains having fixed bond angles and restricted internal rotations. The theory contains the displacement-vector distribution given by Nagai, and the Flory-Wall-Hermans procedure is used for the calculation of network properties. Whereas the treatment is valid for all types of polymer chains, it is not totally satisfactory from a practical standpoint because of a slow series convergence if the chains are stiff. It is best utilized for flexible polymers under conditions of light crosslinking. Detailed network behavior is investigated only for polyethylene type chains having uncorrelated internal rotations. In this instance the fractional contribution fe/f of the internal energy of the total force f is found to be a function of elongation at high degress of stretching. It may decrease, or increase, depending upon the sign of fe/f at low elongations. Furthermore, the variation of fe/f with elongation is independent of the fixed bond angle of the chain backbone. Stress–strain behavior and energy–strain behavior are in opposition, i.e., when the non-Gaussian contribution to the stress is greatest, it is the least for the ratio fe/f, and vice versa. The presence of correlated internal rotations would not be expected to greatly alter these general conclusions.  相似文献   

18.
The simple cubic‐lattice model of polymer chains was used to study the dynamic properties of adsorbed, branched polymers. The model star‐branched chains consisted of f = 3 arms of equal lengths. The chain was modeled with excluded volume, that is, in good solvent conditions. The only interaction assumed was a contact potential between polymer segments and an impenetrable surface. This potential was varied to cover both weak and strong adsorption regimes. The classical Metropolis sampling algorithm was used for models of star‐branched polymers in order to calculate the dynamic properties of adsorbed chains. It was shown that long‐time dynamics (diffusion constant) and short‐time dynamics (the longest relaxation time) were different for weak and strong adsorption. The diffusion of weakly adsorbed chains was found to be qualitatively the same as for free nonadsorbed chains, whereas strongly adsorbed chains behaved like two‐dimensional polymers. The time‐dependent properties of structural elements such as tails, loops, and trains were also determined.

The mean lifetimes of tails, loops, and trains versus the bead number for the chain with N = 799 beads for the case of the weak adsorption εa = −0.3.  相似文献   


19.
On increasing the temperature of a polymer, the transition of the polymer from a rubbery elastic state to a fluid state could occur. The transition temperature is termed the fluid temperature of the polymer, T f, which has a direct relationship with the polymer molecular weight. As one of polymer parameters, T f is as important as the glass transition temperature of a polymer, T g. Moreover, special attention to T f should be paid for polymer processing. In research on the transition of a polymer from a rubbery elastic state to a fluid state, the concept of T f would be more reasonable and more effective than the concept of T l,l because it is neglected in the concept of T l,l in that the molecular weight of a polymer may affect the transition of the polymer. In this paper the discussion on the fluid temperature involves the characters of polymers, such as the deformation—temperature curve, the temperature range of the rubbery state and the shear viscosity of polymer melt. From the viewpoint of the cohesional state of polymers, the transition of a polymer from a rubbery elastic state to a fluid state responds to destruction and construction of the cohesional entanglement network in the polymer. The relaxing network of polymer melt would be worthy to be considered as an object of study. __________ Translated from Huaxue Tongbao (Chemistry), 2008,71(3) (in Chinese)  相似文献   

20.
The synthesis of cationic cyclopentadienyliron-containing polymers with pendent azobenzene chromophores was accomplished via metal-mediated nucleophilic aromatic substitution reactions. All of the desired polymers were isolated as vibrantly coloured materials and displayed excellent solubility in polar aprotic solvents. Cationic and neutral cyclopentadienyliron polymers incorporating azo dyes in the backbone were also prepared. Reactions of azo dyes with dichlorobenzene complexes allowed for the isolation of cationic cyclopentdienyliron (CpFe+) complexes with azo dye chromophores. These complexes were then reacted with 1,1′-ferrocenedicarbonyl chloride to produce the trimetallic monomers with terminal chloro groups. These monomers contained two pendent CpFe+ cations and a neutral iron moiety in the backbone. Nucleophilic substitution reactions of these monomers with oxygen and sulfur containing dinucleophiles gave rise to a new class of polymeric materials. The pendent CpFe+ moieties could also be cleaved from the polymer backbones using photolysis to afford novel ferrocene based polymers. The UV-vis spectra of the organoiron monomers and polymers display similar wavelength maxima however incorporating azobenzene chromophores with electron-withdrawing substituent into the polymer chains resulted in bathochromic shifts of the λmax values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号